923 resultados para D-glucose and N-acetylglucosamine
Resumo:
OBJECTIVE: To evaluate the effects of nutrient intake and vitamin D status on markers of type I collagen formation and degradation in adolescent boys and girls. DESIGN: Cross-sectional study. SETTING: Canton of Vaud, West Switzerland. SUBJECTS: A total of 92 boys and 104 girls, aged 11-16 y. Data were collected on height, weight, pubertal status (self-assessment of Tanner stage), nutrient intake (3-day dietary record) and fasting serum concentration of 25-hydroxyvitamin D (25OHD), and markers of collagen formation (P1NP) and degradation (serum C-terminal telopeptides: S-CTX). RESULTS: Tanner stage was a significant determinant of P1NP in boys and girls and S-CTX in girls. Of the nutrients examined, only the ratio of calcium to phosphorus (Ca/P) was positively associated with P1NP in boys, after adjustment for pubertal status. 25OHD decreased significantly at each Tanner stage in boys. Overall, 15% of boys and 17% of girls were identified as being vitamin D insufficient (serum 25OHD <30 nmol/l), with the highest proportion of insufficiency at Tanner stage 4-5 (29%) in boys and at Tanner stage 3 (24%) in girls. A significant association was not found between 25OHD and either bone turnover marker, nor was 25OHD insufficiency associated with higher concentrations of the bone turnover markers. CONCLUSIONS: The marked effects of puberty on bone metabolism may have obscured any possible effects of diet and vitamin D status on markers of bone metabolism. The mechanistic basis for the positive association between dietary Ca/P ratio and P1NP in boys is not clear and may be attributable to a higher Ca intake per se, a critical balance between Ca and P intake or higher dairy product consumption. A higher incidence of vitamin D insufficiency in older adolescents may reflect a more sedentary lifestyle or increased utilisation of 25OHD, and suggests that further research is needed to define their requirements. SPONSORSHIP: Nestec Ltd and The Swiss Foundation for Research in Osteoporosis.
Resumo:
BACKGROUND: We report a patient with a highly unusual presentation of a mitochondrial disorder. HISTORY AND SIGNS: An 8-year old girl presented with muscular cramps as well as height and weight deceleration. Investigations revealed lactic acidosis, electrolytic imbalance and urinary loss of glucose and electrolytes secondary to proximal renal tubulopathy consistent with Fanconi syndrome (FS). Ophthalmic examination revealed asymptomatic retinitis pigmentosa (RP) with no other ocular manifestations. A mitochondriopathy was suspected and genetic analysis performed. THERAPY AND OUTCOME: Southern blotting documented a heteroplasmic mutation of mtDNA with deletion/duplication. Three discrete mitochondrial genomes were detected: normal; deletion of 6.7 kb and a deletion/duplication consisting of 1 normal and 1 deleted genome. The relative proportions varied considerably between tissues. CONCLUSIONS: The association of FS and RP combines features of Kearns-Sayre syndrome and Pearson marrow-pancreas syndrome, without being typical of either. This highly unusual clinical presentation emphasises the need for systemic investigation of patients with FS and further underlines the importance of mtDNA analysis in patients with unexpected associations of affected tissues.
Resumo:
The aim of this study was to identify medico-legal situations characterized by increased vitreous glucose concentrations, potentially lethal blood 3-hydroxybutyrate levels and conditions that could either incapacitate or lead to death on their own. The above was investigated in order to verify whether prolonged states of unconsciousness may play a role in precipitating diabetic ketoacidosis. Six groups of medico-legal situations (corresponding to 206 autopsy cases) were identified. Among these, three cases were characterized by pathologically increased vitreous glucose and blood 3-hydroxybutyrate levels. In one case diabetic ketoacidosis coexisted with underlying features that might have potentially incapacitated or lead to death on their own, whereas in two cases it corresponded with potentially lethal or lethal drug concentrations. The results of this study highlight the usefulness of systematically performing biochemistry in order to identify diabetic ketoacidosis-related deaths, even when autopsy and toxicology results provide apparently conclusive findings.
Resumo:
SUMMARY : Peroxisome proliferator-activated receptor ß/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in various organs, including muscle, adipose tissue and liver. However, nothing is known about the function of PPARß in pancreas, a prime organ in the control of glucose homeostasis. To gain insight into so far hypothetical functions of this PPAR isotype in ß-cell function, we specifically ablated Pparß in the whole epithelial compartment of the pancreas. The mutated mice presented expanded ß-cell mass, possibly, this is due to increased burst of ß-cell proliferation at 2 weeks of age. These PPARß null pancreas mice exhibit hyperinsulinemia-hypoglycaemia starting at 4 weeks of age, due to hyperfunctionality of ß-cell. Gene expression profiling indicated a broad repressive function of PPARß impacting the vesicular and granular compartment, actin cytoskeleton, and metabolism of glucose and fatty acids. Analyses of insulin release from isolated islets revealed accelerated second-phase of glucose-stimulated insulin secretion. Higher levels of PKD and PKCS in mutated animals, in concert with F-actin disassembly, lead to an increased insulin secretion and its associated systemic effects. Enhanced palmitate potentiation of glucose-stimulated insulin secretion in PPARß mutant islets, suggests an important role of this receptor in lipid/glucose metabolism in ß-cell. Taken together, these results provide evidence for PPARß playing a repressive role on ß-cell growth and insulin exocytosis, and shed new light on its metabolic .action. RESUME : Le récepteur nucléaire PPARß (Peroxisome proliferator-activated receptor ß/δ) protège contre l'obésité en réduisant la dyslipidémie et la résistance à l'insuline dans différents organes, comme le muscle, le tissue adipeux et le foie. Cependant, il y a, à ce jour, très peu de connaissance par rapport au rôle de PPARß dans le pancréas, qui est un organe très important dans le contrôle homéostatique du glucose. Afin de comprendre le rôle de cet isotype de PPAR dans le fonctionnement des cellules beta du pancréas, nous avons invalidé le gène Pparß dans tout le compartiment pancréatique de la souris. Ces souris mutantes présentent une augmentation de la masse totale de cellules beta; Cela serait dû à une intense prolifération des cellules beta à 2 semaines après la naissance. Également, ces souris présentent une hyperinsulinémie et une hypoglycémie qui commencent à l'âge de 4 semaines; la raison de ce phénotype serait une hyperactivité des cellules beta. Le profil d'expression génique indique une fonction répressive globale de PPARß en se référant aux compartiments vésiculaire et granulaire, au cytosquelette d'actine, et au métabolisme du glucose et des acides gras. L'analyse de la sécrétion d'insuline par les cellules beta a démontré que la deuxième phase de sécrétion d'insuline après stimulation au glucose est augmentée. Les niveaux élevés de PKD et PKCS dans les îlots pancréatiques de souris mutantes, ainsi qu'une augmentation de la dépolymérisation des filaments d'active génèrent un surplus de sécrétion d'insuline après stimulation au glucose. Les îlots pancréatiques des souris mutantes secrètent plus d'insuline après stimulation au glucose et au palmitate que les îlots de souris contrôles. Ceci suggère un rôle important de PPARß dans le métabolisme des lipides et du glucose des cellules beta. En résumé, ces résultats mettent en évidence un rôle répressif de PPARß dans la croissance des cellules beta et dans l'exocytose d'insuline.
Resumo:
Due to the intense international competition, demanding, and sophisticated customers, and diverse transforming technological change, organizations need to renew their products and services by allocating resources on research and development (R&D). Managing R&D is complex, but vital for many organizations to survive in the dynamic, turbulent environment. Thus, the increased interest among decision-makers towards finding the right performance measures for R&D is understandable. The measures or evaluation methods of R&D performance can be utilized for multiple purposes; for strategic control, for justifying the existence of R&D, for providing information and improving activities, as well as for the purposes of motivating and benchmarking. The earlier research in the field of R&D performance analysis has generally focused on either the activities and considerable factors and dimensions - e.g. strategic perspectives, purposes of measurement, levels of analysis, types of R&D or phases of R&D process - prior to the selection of R&Dperformance measures, or on proposed principles or actual implementation of theselection or design processes of R&D performance measures or measurement systems. This study aims at integrating the consideration of essential factors anddimensions of R&D performance analysis to developed selection processes of R&D measures, which have been applied in real-world organizations. The earlier models for corporate performance measurement that can be found in the literature, are to some extent adaptable also to the development of measurement systemsand selecting the measures in R&D activities. However, it is necessary to emphasize the special aspects related to the measurement of R&D performance in a way that make the development of new approaches for especially R&D performance measure selection necessary: First, the special characteristics of R&D - such as the long time lag between the inputs and outcomes, as well as the overall complexity and difficult coordination of activities - influence the R&D performance analysis problems, such as the need for more systematic, objective, balanced and multi-dimensional approaches for R&D measure selection, as well as the incompatibility of R&D measurement systems to other corporate measurement systems and vice versa. Secondly, the above-mentioned characteristics and challenges bring forth the significance of the influencing factors and dimensions that need to be recognized in order to derive the selection criteria for measures and choose the right R&D metrics, which is the most crucial step in the measurement system development process. The main purpose of this study is to support the management and control of the research and development activities of organizations by increasing the understanding of R&D performance analysis, clarifying the main factors related to the selection of R&D measures and by providing novel types of approaches and methods for systematizing the whole strategy- and business-based selection and development process of R&D indicators.The final aim of the research is to support the management in their decision making of R&D with suitable, systematically chosen measures or evaluation methods of R&D performance. Thus, the emphasis in most sub-areas of the present research has been on the promotion of the selection and development process of R&D indicators with the help of the different tools and decision support systems, i.e. the research has normative features through providing guidelines by novel types of approaches. The gathering of data and conducting case studies in metal and electronic industry companies, in the information and communications technology (ICT) sector, and in non-profit organizations helped us to formulate a comprehensive picture of the main challenges of R&D performance analysis in different organizations, which is essential, as recognition of the most importantproblem areas is a very crucial element in the constructive research approach utilized in this study. Multiple practical benefits regarding the defined problemareas could be found in the various constructed approaches presented in this dissertation: 1) the selection of R&D measures became more systematic when compared to the empirical analysis, as it was common that there were no systematic approaches utilized in the studied organizations earlier; 2) the evaluation methods or measures of R&D chosen with the help of the developed approaches can be more directly utilized in the decision-making, because of the thorough consideration of the purpose of measurement, as well as other dimensions of measurement; 3) more balance to the set of R&D measures was desired and gained throughthe holistic approaches to the selection processes; and 4) more objectivity wasgained through organizing the selection processes, as the earlier systems were considered subjective in many organizations. Scientifically, this dissertation aims to make a contribution to the present body of knowledge of R&D performance analysis by facilitating dealing with the versatility and challenges of R&D performance analysis, as well as the factors and dimensions influencing the selection of R&D performance measures, and by integrating these aspects to the developed novel types of approaches, methods and tools in the selection processes of R&D measures, applied in real-world organizations. In the whole research, facilitation of dealing with the versatility and challenges in R&D performance analysis, as well as the factors and dimensions influencing the R&D performance measure selection are strongly integrated with the constructed approaches. Thus, the research meets the above-mentioned purposes and objectives of the dissertation from the scientific as well as from the practical point of view.
Resumo:
In vertebrates, early brain development takes place at the expanded anterior end of the neural tube, which is filled with embryonic cerebrospinal fluid (E-CSF). We have recently identified a transient blood-CSF barrier that forms between embryonic days E3 and E4 in chick embryos and that is responsible for the transport of proteins and control of E-CSF homeostasis, including osmolarity. Here we examined the presence of glucose transporter GLUT-1 as well the presence of caveolae-structural protein Caveolin1 (CAV-1) in the embryonic blood-CSF barrier which may be involved in the transport of glucose and of proteins, water and ions respectively across the neuroectoderm. In this paper we demonstrate the presence of GLUT-1 and CAV-1 in endothelial cells of blood vessels as well as in adjacent neuroectodermal cells, located in the embryonic blood-CSF barrier. In blood vessels, these proteins were detected as early as E4 in chick embryos and E12.7 in rat embryos, i.e. the point at which the embryonic blood-CSF barrier acquires this function. In the neuroectoderm of the embryonic blood-CSF barrier, GLUT-1 was also detected at E4 and E12.7 respectively, and CAV-1 was detected shortly thereafter in both experimental models. These experiments contribute to delineating the extent to which the blood-CSF embryonic barrier controls E-CSF composition and homeostasis during early stages of brain development in avians and mammals. Our results suggest the regulation of glucose transport to the E-CSF by means of GLUT-1 and also suggest a mechanism by which proteins are transported via transcellular routes across the neuroectoderm, thus reinforcing the crucial role of E-CSF in brain development.
Resumo:
Tämä tutkielma käsittelee lisäarvon syntymistä, ylläpitämistä ja hallintaa verkostoi-tuneessa tuotekehitysympäristössä. Teemahaastattelu-menetelmää käyttäen, tavoitteena on tunnistaa ja kuvata ne prosessit, käytännöt ja toimintatavat, joissa kohdeyritys on onnistunut ja joissa lisäarvoa on syntynyt. Toinen keskeinen tavoite on löytää ongelmalliset alueet lisäarvon tuottamisessa ja analysoida, miksi nämä alueet ovat ongelmallisia. Käsitteiden arvo, arvoketju ja arvoverkosto, sekä viitekirjallisuuden esimerkkien perusteella muodostetaan teoreettinen viitekehys ja kuvataan niitä hyödyllisiä toimintatapoja ja käytäntöjä, joihin panostamalla lisäarvoa syntyy. Erityisesti informaatioteknologian alalla verkostoituminen ja arvoverkosto ovat yhä merkittävämpiä tuotekehityksen toimintatapoja, mihin horisontaalisen yhteistyön kehittyminen, globalisoituminen ja informaatioteknologian nopea kehitys on johtanut. Keskeisiä tuloksia ovat tarve yhtenäisempään, prosessinomaisempaan toimintatapaan ja liiketoimintaprosessien muokkaamiseen verkostoituneen T&K ympäristön vaatimusten mukaisesti. Myös tarve paremman näkyvyyden luomiseen sekä aktiviteettien hallintaan uudentyyppisen arvoverkoston vaatimusten mukaisesti korostui tuloksissa.
Resumo:
BACKGROUND: Low vitamin D status has been associated with an increased risk of developing type 2 diabetes and insulin resistance (IR), although this has been recently questioned. OBJECTIVE: We examined the association between serum vitamin D metabolites and incident IR. METHODS: This was a prospective, population-based study derived from the CoLaus (Cohorte Lausannoise) study including 3856 participants (aged 51.2 ± 10.4 y; 2217 women) free from diabetes or IR at baseline. IR was defined as a homeostasis model assessment (HOMA) index >2.6. Fasting plasma insulin and glucose were measured at baseline and at follow-up to calculate the HOMA index. The association of vitamin D metabolites with incident IR was analyzed by logistic regression, and the results were expressed for each independent variable as ORs and 95% CIs. RESULTS: During the 5.5-y follow-up, 649 (16.9%) incident cases of IR were identified. Participants who developed IR had lower baseline serum concentrations of 25-hydroxyvitamin D3 [25(OH)D3 (25-hydroxycholecalciferol); 45.9 ± 22.8 vs. 49.9 ± 22.6 nmol/L; P < 0.001], total 25(OH)D3 (25(OH)D3 + epi-25-hydroxyvitamin D3 [3-epi-25(OH)D3]; 49.1 ± 24.3 vs. 53.3 ± 24.1 nmol/L; P < 0.001), and 3-epi-25(OH)D3 (4.2 ± 2.9 vs. 4.3 ± 2.5 nmol/L; P = 0.01) but a higher 3-epi- to total 25(OH)D3 ratio (0.09 ± 0.05 vs. 0.08 ± 0.04; P = 0.007). Multivariable analysis adjusting for month of sampling, age, and sex showed an inverse association between 25(OH)D3 and the likelihood of developing IR [ORs (95% CIs): 0.86 (0.68, 1.09), 0.60 (0.46, 0.78), and 0.57 (0.43, 0.75) for the second, third, and fourth quartiles compared with the first 25(OH)D3 quartile; P-trend < 0.001]. Similar associations were found between total 25(OH)D3 and incident IR. There was no significant association between 3-epi-25(OH)D3 and IR, yet a positive association was observed between the 3-epi- to total 25(OH)D3 ratio and incident IR. Further adjustment for body mass index, sedentary status, and smoking attenuated the association between 25(OH)D3, total 25(OH)D3, and the 3-epi- to total 25(OH)D3 ratio and the likelihood of developing IR. CONCLUSION: In the CoLaus study in healthy adults, the risk of incident IR is not associated with serum concentrations of 25(OH)D3 and total 25(OH)D3.
Resumo:
ABSTRACT: A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice.
Resumo:
BACKGROUND: Exercise prevents the adverse effects of a high-fructose diet through mechanisms that remain unknown. OBJECTIVE: We assessed the hypothesis that exercise prevents fructose-induced increases in very-low-density lipoprotein (VLDL) triglycerides by decreasing the fructose conversion into glucose and VLDL-triglyceride and fructose carbon storage into hepatic glycogen and lipids. DESIGN: Eight healthy men were studied on 3 occasions after 4 d consuming a weight-maintenance, high-fructose diet. On the fifth day, the men ingested an oral (13)C-labeled fructose load (0.75 g/kg), and their total fructose oxidation ((13)CO2 production), fructose storage (fructose ingestion minus (13)C-fructose oxidation), fructose conversion into blood (13)C glucose (gluconeogenesis from fructose), blood VLDL-(13)C palmitate (a marker of hepatic de novo lipogenesis), and lactate concentrations were monitored over 7 postprandial h. On one occasion, participants remained lying down throughout the experiment [fructose treatment alone with no exercise condition (NoEx)], and on the other 2 occasions, they performed a 60-min exercise either 75 min before fructose ingestion [exercise, then fructose condition (ExFru)] or 90 min after fructose ingestion [fructose, then exercise condition (FruEx)]. RESULTS: Fructose oxidation was significantly (P < 0.001) higher in the FruEx (80% ± 3% of ingested fructose) than in the ExFru (46% ± 1%) and NoEx (49% ± 1%). Consequently, fructose storage was lower in the FruEx than in the other 2 conditions (P < 0.001). Fructose conversion into blood (13)C glucose, VLDL-(13)C palmitate, and postprandial plasma lactate concentrations was not significantly different between conditions. CONCLUSIONS: Compared with sedentary conditions, exercise performed immediately after fructose ingestion increases fructose oxidation and decreases fructose storage. In contrast, exercise performed before fructose ingestion does not significantly alter fructose oxidation and storage. In both conditions, exercise did not abolish fructose conversion into glucose or its incorporation into VLDL triglycerides. This trial was registered at clinicaltrials.gov as NCT01866215.
Resumo:
Based on four different public R&D calls from the Catalan government, this article evaluates the propensity of entrants and young firms to apply for R&D public grants and, as compared to their counterparts, their capacity for obtaining subsides. This analysis is particularly relevant since entrants and young firms encounter greater market difficulties. Our sample contains 22,139 firms and corresponds to a merge of two databases: one from the Catalan agency responsible for promoting private innovation (ACC1Ó) and the other from the Mercantile Register. Merging these databases has two advantages. Firstly, participants and non-participants in the public R&D call (“InnoEmpresa”) are included and, secondly, it provides us with information at firm and project level. The period of observation is between 2006 and 2010, since some explanatory variables are lagged by one period. We apply a two-step methodology. Our results show that entrants and young firms show a lower propensity to apply for R&D subsidies and to obtain R&D public grants. Firm size, exports and participation in a previous call show a positive impact on the likelihood of applying, and firms located in the Barcelona metropolitan area have a greater propensity to apply. Additionally, project quality and R&D cooperative reports presented jointly with other partners have a positive impact on the likelihood of obtaining the R&D subsidy. Finally, firms that have previously obtained an R&D subsidy do not exhibit a greater propensity for obtaining subsequent grants. Keywords: R&D subsidies, entrants and young firms Classification JEL: L53, L25, O38
Resumo:
Objective To correlate the results of 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) performed with a specific protocol for assessment of breasts with histological/immunohistochemical findings in breast carcinoma patients. Materials and Methods Cross-sectional study with prospective data collection, where patients with biopsy-confirmed breast carcinomas were studied. The patients underwent PET/CT examination in prone position, with a specific protocol for assessment of breasts. PET/CT findings were compared with histological and immunohistochemical data. Results The authors identified 59 malignant breast lesions in 50 patients. The maximum diameter of the lesions ranged from 6 to 80 mm (mean: 32.2 mm). Invasive ductal carcinoma was the most common histological type (n = 47; 79.7%). At PET/CT, 53 (89.8%) of the lesions demonstrated anomalous concentrations of 18F-FDG, with maximum SUV ranging from 0.8 to 23.1 (mean: 5.5). A statistically significant association was observed between higher values of maximum SUV and histological type, histological grade, molecular subtype, tumor diameter, mitotic index and Ki-67 expression. Conclusion PET/CT performed with specific protocol for assessment of breasts has demonstrated good sensitivity and was associated with relevant histological/immunohistochemical factors related to aggressiveness and prognosis of breast carcinomas.
Resumo:
Obesity has become the leading cause of many chronic diseases, such as type 2 diabetes and cardiovascular diseases. The prevalence of obesity is high in developed countries and it is also a major cause of the use of health services. Ectopic fat accumulation in organs may lead to metabolic disturbances, such as insulin resistance.Weight loss with very-low-energy diet is known to be safe and efficient. Weight loss improves whole body insulin sensitivity, but its effects on tissue and organ level in vivo are not well known. The aims of the studies were to investigate possible changes of weight loss in glucose and fatty acid uptake and perfusion and fat distribution at tissue and organ level using positron emission tomography and magnetic resonance imaging and spectroscopy in 34 healthy obese subjects. The results showed that whole-body insulin sensitivity increased after weight loss with very-low-energy diet and this is associated with improved skeletal muscle insulin-stimulated glucose uptake, but not with adipose tissue, liver or heart glucose uptake. Liver insulin resistance decreased after weight loss. Liver and heart free fatty acid uptakes decreased concomitantly with liver and heart triglyceride content. Adipose tissue and myocardial perfusion decreased. In conclusion, enhanced skeletal muscle glucose uptake leads to increase in whole-body insulin sensitivity when glucose uptake is preserved in other organs studied. These findings suggest that lipid accumulation found in the liver and the heart in obese subjects without co-morbidies is in part reversible by reduced free fatty acid uptake after weight loss. Reduced lipid accumulation in organs may improve metabolic disturbances, e.g. decrease liver insulin resistance. Keywords: Obesity, weight loss, very-low-energy diet, adipose tissue metabolism, liver metabolism, heart metabolism, positron emission tomography
Resumo:
Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.
Resumo:
The phytochemical investigation of Bakeridesia pickelii Monteiro led to the isolation of seven compounds: beta-sitosterol, a mixture of sitosteryl-3-O-beta-D-glucopyranoside and stigmasteryl-3-O-beta-D-glucopyranoside, vanillic acid, p-coumaric acid, quercetin 3-O-beta-D-glucopyranoside (isoquercitrin) and kaempferol-3-O-beta-D-(6"-E-p -coumaroyl) glucopyranoside (tiliroside), which was isolated as the major component. Their structures were elucidated on the basis of spectroscopic data such as IR, ¹H and 13C NMR, including two-dimensional techniques. Tiliroside relaxed the guinea-pig ileum pre-contracted with KCl 40 mM (EC50 = 9.5 ± 1.0 x 10-5 M), acetylcholine 10-6 M (EC50 = 2.3 ± 0.9 x 10-5 M) or histamine 10-6 M (EC50 = 4.1 ± 1.0 x 10-5 M) in a concentration-dependent manner.