872 resultados para Control of chaos
Resumo:
Brown adipocytes oxidize fatty acids to produce heat in response to cold or to excessive energy intake; stimulation of brown fat development and function may thus counteract obesity. Brown adipogenesis requires activation of the transcription factor C/EBPβ and recruitment of the zinc finger protein Prdm16, but upstream inducers of these proteins are incompletely defined. Here, we show that genetic inactivation of Plac8, a gene encoding an evolutionarily conserved protein, induces cold intolerance, and late-onset obesity, as well as abnormal morphology and impaired function of brown adipocytes. Using brown preadipocyte lines we show that Plac8 is required for brown fat differentiation, that its overexpression induces C/EBPβ and Prdm16, and that upon induction of differentiation Plac8 associates with C/EBPβ and binds to the C/EBPβ promoter to induce its transcription. Thus, Plac8 is a critical upstream regulator of brown fat differentiation and function that acts, at least in part, by inducing C/EBPβ expression.
Resumo:
The magnetic exchange between epitaxial thin films of the multiferroic (antiferromagnetic and ferroelectric) hexagonal YMnO3 oxide and a soft ferromagnetic (FM) layer is used to couple the magnetic response of the FM layer to the magnetic state of the antiferromagnetic one. We will show that biasing the ferroelectric YMnO3 layer by an electric field allows control of the magnetic exchange bias and subsequently the magnetotransport properties of the FM layer. This finding may contribute to paving the way towards a new generation of electric-field controlled spintronic devices.
Resumo:
OBJECTIVE: Evaluation of the quantitative antibiogram as an epidemiological tool for the prospective typing of methicillin-resistant Staphylococcus aureus (MRSA), and comparison with ribotyping. METHODS: The method is based on the multivariate analysis of inhibition zone diameters of antibiotics in disk diffusion tests. Five antibiotics were used (erythromycin, clindamycin, cotrimoxazole, gentamicin, and ciprofloxacin). Ribotyping was performed using seven restriction enzymes (EcoRV, HindIII, KpnI, PstI, EcoRI, SfuI, and BamHI). SETTING: 1,000-bed tertiary university medical center. RESULTS: During a 1-year period, 31 patients were found to be infected or colonized with MRSA. Cluster analysis of antibiogram data showed nine distinct antibiotypes. Four antibiotypes were isolated from multiple patients (2, 4, 7, and 13, respectively). Five additional antibiotypes were isolated from the remaining five patients. When analyzed with respect to the epidemiological data, the method was found to be equivalent to ribotyping. Among 206 staff members who were screened, six were carriers of MRSA. Both typing methods identified concordant of MRSA types in staff members and in the patients under their care. CONCLUSIONS: The quantitative antibiogram was found to be equivalent to ribotyping as an epidemiological tool for typing of MRSA in our setting. Thus, this simple, rapid, and readily available method appears to be suitable for the prospective surveillance and control of MRSA for hospitals that do not have molecular typing facilities and in which MRSA isolates are not uniformly resistant or susceptible to the antibiotics tested.
Resumo:
Short- and long-term effect of oxytocin on Na+ transport and Na-K-ATPase biosynthesis in the toad bladder, and the potential interaction of this hormone with aldosterone have been studied, leading to the following observations. An early Na+ transport response (oxytocin, 50 mU/ml) peaked at 10-15 min of hormone addition. At maximal stimulation a three- to fourfold increase in Na+ transport was observed, a sustained Na+ transport response (about two-fold control base line) was observed as long as the hormone was present in the medium and for up to 20 h of incubation. Pretreatment for 30 min with actinomycin D (2 micrograms/ml) did not inhibit the early response, but significantly impaired the sustained response, suggesting that de novo protein synthesis was required. The simultaneous addition of the two hormones led within 60 min to a marked potentiation of the action on Na+ transport. This synergism could be mimicked by exogenous cyclic adenosine monophosphate (cAMP). Oxytocin alone (18 h exposure, 50 mU/ml) increased the relative rate of synthesis of both alpha and beta subunits of Na-K-ATPase (1.9- and 1.6-fold, respectively; P less than 0.05), whereas aldosterone (80 nM) increased the relative rate of synthesis of the same subunits (2.6- and 2.2-fold, respectively; P less than 0.02). Finally, in contrast to what was observed at the physiological level, the interaction of oxytocin and aldosterone did not lead to a similar potentiation at the biochemical level, i.e., induction of Na-K-ATPase biosynthesis (2.7- and 2.9-fold, for alpha and beta subunits, respectively; P less than 0.025).
Resumo:
Combined report on the institutions under the control of the Iowa Department of Corrections for the five years ended June 30, 2011
Resumo:
Combined report on the institutions under the control of the Iowa Department of Human Services for the five years ended June 30, 2011
Resumo:
Chromosome replication in Caulobacter crescentus is tightly regulated to ensure that initiation occurs at the right time and only once during the cell cycle. The timing of replication initiation is controlled by both CtrA and DnaA. CtrA binds to and silences the origin. Upon the clearance of CtrA from the cell, the DnaA protein accumulates and allows loading of the replisome at the origin. Here, we identify an additional layer of replication initiation control that is mediated by the HdaA protein. In Escherichia coli, the Hda protein inactivates DnaA after replication initiation. We show that the Caulobacter HdaA homologue is necessary to restrict the initiation of DNA replication to only once per cell cycle and that it dynamically colocalizes with the replisome throughout the cell cycle. Moreover, the transcription of hdaA is directly activated by DnaA, providing a robust feedback regulatory mechanism that adjusts the levels of HdaA to inactivate DnaA.
Resumo:
We present a feedback control scheme to stabilize unstable cellular patterns during the directional solidification of a binary alloy. The scheme is based on local heating of cell tips which protrude ahead of the mean position of all tips in the array. The feasibility of this scheme is demonstrated using phase-field simulations and, experimentally, using a real-time image processing algorithm, to track cell tips, coupled with a movable laser spot array device to heat the tips locally. We demonstrate, both numerically and experimentally, that spacings well below the threshold for a period-doubling instability can be stabilized. As predicted by the numerical calculations, cellular arrays become stable with uniform spacing through the feedback control which is maintained with minimal heating.
Resumo:
By simulations of the Barkley model, action of uniform periodic nonresonant forcing on scroll rings and wave turbulence in three-dimensional excitable media is investigated. Sufficiently strong rapid forcing converts expanding scroll rings into the collapsing ones and suppresses the Winfree turbulence caused by the negative tension of wave filaments. Slow strong forcing has an opposite effect, leading to expansion of scroll rings and induction of the turbulence. These effects are explained in the framework of the phenomenological kinematic theory of scroll waves.
Resumo:
Introduction & Objectives: Surgery remains the treatment of choice for localized renal cell neoplasia. While radical nephrectomy was long considered as gold standard, partial nephrectomy (PN) has widened its indications over the past twodecades and has shown oncological results equivalent to radical nephrectomy for small tumors. Moreover, it is considered superior to radical nephrectomy in terms of non-cancer related mortality. The role of negative surgical margin has been widely debated. Intraoperative frozen section analysis has been shown to be unreliable, expensive, time-consuming and not well correlated to final pathology. The goal of the present study was to assess the correlation of intraoperative exvivo ultrasonographic (US) evaluation of resection margin to definitive pathology in patients undergoing PN.Materials & Methods: An observational study was carried out in ours 2 institutions from February 2008 to October 2010. Patients undergoing PN for T1-T2 renal tumors were included. Ex vivo US evaluation was performed. Considering availability of US engine, not all consecutive eligible patients were included. PN was undertaken either by open surgery or laparoscopic access in a standardized technique. The "minimal healthy tissue margin" technique was applied. Once resected, the specimen was kept in a saline solution and US determination of tumor margins was performed. Sequential images were captured in order to evaluate the whole capsule.Results: Twenty-two patients (9 women, age 63±11 years[46-78]) were included in the present analysis. Open or laparoscopic PN was performed in 19 and 3 patients, respectively. Intraoperative ex-vivo US showed negative surgical margin in all cases except one, needing a complementary renal parenchyma resection. US duration ranged from 1 to 4 minutes, with a median time of 1 minute. Definitive histological analysis confirmed the presence of 3 angiomyolipoma, 15 clear cell carcinoma (11 pT1a,3 pT1b,1 pT2), 3 chromophobe carcinoma (1 pT1a,1 pT1b,1 pT2) and 1 pT1a type II papillary tumor. Mean tumor size was 3,4±2.1 cm [0,6-7,2]. Final pathology revealed R0 margins in all cases.Conclusions: Intraoperative ex-vivo US evaluation of resection margin in patients undergoing PN is feasible, time-efficient, well correlated to definitive pathological examination, and should be evaluated in further prospective trials.
Resumo:
The circadian timekeeping mechanism adapts physiology to the 24-hour light/dark cycle. However, how the outputs of the circadian clock in different peripheral tissues communicate and synchronize each other is still not fully understood. The circadian clock has been implicated in the regulation of numerous processes, including metabolism, the cell cycle, cell differentiation, immune responses, redox homeostasis, and tissue repair. Accordingly, perturbation of the machinery that generates circadian rhythms is associated with metabolic disorders, premature ageing, and various diseases including cancer. Importantly, it is now possible to target circadian rhythms through systemic or local delivery of time cues or compounds. Here, we summarize recent findings in peripheral tissues that link the circadian clock machinery to tissue-specific functions and diseases.
Resumo:
The cytokine tumor necrosis factor-alpha (TNFalpha) induces Ca2+-dependent glutamate release from astrocytes via the downstream action of prostaglandin (PG) E2. By this process, astrocytes may participate in intercellular communication and neuromodulation. Acute inflammation in vitro, induced by adding reactive microglia to astrocyte cultures, enhances TNFalpha production and amplifies glutamate release, switching the pathway into a neurodamaging cascade (Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., and Volterra, A. (2001) Nat. Neurosci. 4, 702-710). Because glial inflammation is a component of Alzheimer disease (AD) and TNFalpha is overexpressed in AD brains, we investigated possible alterations of the cytokine-dependent pathway in PDAPP mice, a transgenic model of AD. Glutamate release was measured in acute hippocampal and cerebellar slices from mice at early (4-month-old) and late (12-month-old) disease stages in comparison with age-matched controls. Surprisingly, TNFalpha-evoked glutamate release, normal in 4-month-old PDAPP mice, was dramatically reduced in the hippocampus of 12-month-old animals. This defect correlated with the presence of numerous beta-amyloid deposits and hypertrophic astrocytes. In contrast, release was normal in cerebellum, a region devoid of beta-amyloid deposition and astrocytosis. The Ca2+-dependent process by which TNFalpha evokes glutamate release in acute slices is distinct from synaptic release and displays properties identical to those observed in cultured astrocytes, notably PG dependence. However, prostaglandin E2 induced normal glutamate release responses in 12-month-old PDAPP mice, suggesting that the pathology-associated defect involves the TNFalpha-dependent control of secretion rather than the secretory process itself. Reduced expression of DENN/MADD, a mediator of TNFalpha-PG coupling, might account for the defect. Alteration of this neuromodulatory astrocytic pathway is described here for the first time in relation to Alzheimer disease.
Resumo:
As expression of Cxs in cells of the immune system increases upon cellular activation, we investigated whether Cxs and especially CxHcs play a major role during T cell-mediated responses. In particular, we studied the expression of Cx43Hc following CD4(+) T cell stimulation using flow cytometry, real-time PCR, and Western blot analysis. We showed that expression of Cx43 and its phosphorylated isoforms increased in response to the engagement of CD3 and CD28. Cx43Hcs were found to be involved in sustaining proliferation of T cells, as assessed by cell cycle staining, thymidine incorporation assays, and CFSE analysis of cells exposed to mimetic peptide inhibitors of the plasma membrane Cx channels and antibodies generated to an extracellular region of Cx. The reduction of T cell proliferation mediated by Cx channel inhibitors suppressed cysteine uptake but not cytokine production. We conclude that upon antigen recognition, T cells require CxHc to sustain their clonal expansion.
Resumo:
Membrane fusion and fission are antagonistic reactions controlled by different proteins. Dynamins promote membrane fission by GTP-driven changes of conformation and polymerization state, while SNAREs fuse membranes by forming complexes between t- and v-SNAREs from apposed vesicles. Here, we describe a role of the dynamin-like GTPase Vps1p in fusion of yeast vacuoles. Vps1p forms polymers that couple several t-SNAREs together. At the onset of fusion, the SNARE-activating ATPase Sec18p/NSF and the t-SNARE depolymerize Vps1p and release it from the membrane. This activity is independent of the SNARE coactivator Sec17p/alpha-SNAP and of the v-SNARE. Vps1p release liberates the t-SNAREs for initiating fusion and at the same time disrupts fission activity. We propose that reciprocal control between fusion and fission components exists, which may prevent futile cycles of fission and fusion.