979 resultados para Confinamento magnético
Resumo:
Microstrip antennas are subject matter in several research fields due to its numerous advantages. The discovery, at 1999, of a new class of materials called metamaterials - usually composed of metallic elements immersed in a dielectric medium, have attracted the attention of the scientific community, due to its electromagnetic properties, especially the ability to use in planar structures, such as microstrip, without interfering with their traditional geometry. The aim of this paper is to analyze the effects of one and bidimensional metamaterial substrates in microstrip antennas, with different configurations of resonance rings, SRR, in the dielectric layer. Fractal geometry is applied to these rings, in seeking to verify a multiband behavior and to reduce the resonance frequency of the antennas. The results are then given by commercial software Ansoft HFSS, used for precise analysis of the electromagnetic behavior of antennas by Finite Element Method (FEM). To reach it, this essay will first perform a literature study on fractal geometry and its generative process. This paper also presents an analysis of microstrip antennas, with emphasis on addressing different types of substrates as part of its electric and magnetic anisotropic behavior. It s performed too an approach on metamaterials and their unique properties
Resumo:
The main goal of the present work is related to the dynamics of the steady state, incompressible, laminar flow with heat transfer, of an electrically conducting and Newtonian fluid inside a flat parallel-plate channel under the action of an external and uniform magnetic field. For solution of the governing equations, written in the parabolic boundary layer and stream-function formulation, it was employed the hybrid, numericalanalytical, approach known as Generalized Integral Transform Technique (GITT). The flow is sustained by a pressure gradient and the magnetic field is applied in the direction normal to the flow and is assumed that normal magnetic field is kept uniform, remaining larger than any other fields generated in other directions. In order to evaluate the influence of the applied magnetic field on both entrance regions, thermal and hydrodynamic, for this forced convection problem, as well as for validating purposes of the adopted solution methodology, two kinds of channel entry conditions for the velocity field were used: an uniform and an non-MHD parabolic profile. On the other hand, for the thermal problem only an uniform temperature profile at the channel inlet was employed as boundary condition. Along the channel wall, plates are maintained at constant temperature, either equal to or different from each other. Results for the velocity and temperature fields as well as for the main related potentials are produced and compared, for validation purposes, to results reported on literature as function of the main dimensionless governing parameters as Reynolds and Hartman numbers, for typical situations. Finally, in order to illustrate the consistency of the integral transform method, convergence analyses are also effectuated and presented
Resumo:
O Sistema de Posicionamento Global (GPS) transmite seus sinais em duas freqüências, o que permite eliminar matematicamente os efeitos de primeira ordem da ionosfera através da combinação linear ionosphere free. Porém, restam os efeitos de segunda e terceira ordem, os quais podem provocar erros da ordem de centímetros nas medidas GPS. Esses efeitos, geralmente, são negligenciados no processamento dos dados GPS. Os efeitos ionosféricos de primeira, segunda e terceira ordem são diretamente proporcionais ao TEC presente na ionosfera, porém, no caso dos efeitos de segunda e terceira ordem, comparecem também o campo magnético da Terra e a máxima densidade de elétrons, respectivamente. Nesse artigo, os efeitos de segunda e terceira ordem da ionosfera são investigados, sendo que foram levados em consideração no processamento de dados GPS na região brasileira para fins de posicionamento. Serão apresentados os modelos matemáticos associados a esses efeitos, as transformações envolvendo o campo magnético da Terra e a utilização do TEC advindo dos Mapas Globais da Ionosfera ou calculados a partir das observações GPS de pseudodistância. O processamento dos dados GPS foi realizado considerando o método relativo estático e cinemático e o posicionamento por ponto preciso (PPP). Os efeitos de segunda e terceira ordem foram analisados considerando períodos de alta e baixa atividade ionosférica. Os resultados mostraram que a não consideração desses efeitos no posicionamento por ponto preciso e no posicionamento relativo para linhas de base longas pode introduzir variações da ordem de poucos milímetros nas coordenadas das estações, além de variações diurnas em altitude da ordem de centímetros.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of finite size on the magnetic properties of ferromagnetic particles systems is a recurrent subject. One of the aspects wide investigated is the superparamagnetic limit where the temperature destroys the magnetic order of ferromagnetic small particles. Above the block temperature the thermal value of the magnetic moment of the particle vanishes, due to thermal fluctuations. The value of the blocking temperature diminishes when the size of the particle is reduced, reflecting the reduction of the anisotropy energy barrier between the uniform states along the uniaxial axis. The increasing demand for high density magnetic media has recently attracted great research interest in periodic arrangements of nanometric ferromagnetics particles, approach in the superparamagnetic limit. An interesting conjecture is the possibility of stabilization of the magnetic order of small ferromagnetic particles (F) by interface coupling with antiferromagnetic (AF) substrate. These F/AF systems may also help to elucidate some details of the effect of exchange bias, because the effect of interface roughness and the paper of domain walls, either in the substrate or the particle, are significantly reduced. We investigate the magnetic phases of small ferromagnetic particles on a antiferromagnetic substrate. We use a self-consistent local field method, incorporating the interface field and the dipole interaction between the spins of the ferromagnetic particle. Our results indicate that increasing the area of the interface favors the formation of the uniform state. Howere above a critical height value appears a state non-uniform is formed where the spins of in the particle s free surface are rotated with respect to the interface spins direction. We discuss the impact of the competition between the dipolar and interface field on the magnetic charge, that controls the field of flux leakage of the particle, and on the format of the hysteresis curves. Our results indicate that the liquid magnetic charge is not a monotonically increasing function of the height of the particle. The exchange bias may display anomalous features, induced for the dipolar field of the spins near the F/AF interface
Resumo:
We have used ab initio calculations to investigate the electronic structure of SiGe based nanocrystals (NC s). This work is divided in three parts. In the first one, we focus the excitonic properties of Si(core)/Ge(shell) and Ge(core)/Si(shell) nanocrystals. We also estimate the changes induced by the effect of strain the electronic structure. We show that Ge/Si (Si/Ge) NC s exhibits type II confinement in the conduction (valence) band. The estimated potential barriers for electrons and holes are 0.16 eV (0.34 eV) and 0.64 eV (0.62 eV) for Si/Ge (Ge/Si) NC s. In contradiction to the expected long recombination lifetimes in type II systems, we found that the recombination lifetime of Ge/Si NC s (τR = 13.39μs) is more than one order of magnitude faster than in Si/Ge NC s (τR = 191.84μs). In the second part, we investigate alloyed Si1−xGex NC s in which Ge atoms are randomly positioned. We show that the optical gaps and electron-hole binding energies decrease linearly with x, while the exciton exchange energy increases with x due to the increase of the spatial extent of the electron and hole wave functions. This also increases the electron-hole wave functions overlap, leading to recombination lifetimes that are very sensitive to the Ge content. Finally, we investigate the radiative transitions in Pand B-doped Si nanocrystals. Our NC sizes range between 1.4 and 1.8 nm of diameters. Using a three-levels model, we show that the radiative lifetimes and oscillator strengths of the transitions between the conduction and the impurity bands, as well as the transitions between the impurity and the valence bands are strongly affected by the impurity position. On the other hand, the direct conduction-to-valence band decay is practically unchanged due to the presence of the impurity
Resumo:
We use a finite diference eulerian numerical code, called ZEUS 3D, to do simulations involving the collision between two magnetized molecular clouds, aiming to evaluate the rate of star formation triggered by the collision and to analyse how that rate varies depending on the relative orientations between the cloud magnetic fields before the shock. The ZEUS 3D code is not an easy code to handle. We had to create two subroutines, one to study the cloud-cloud collision and the other for the data output. ZEUS is a modular code. Its hierarchical way of working is explained as well as the way our subroutines work. We adopt two sets of different initial values for density, temperature and magnetic field of the clouds and of the external medium in order to study the collision between two molecular clouds. For each set, we analyse in detail six cases with different directions and orientations of the cloud magnetic field relative to direction of motion of the clouds. The analysis of these twelve cases allowed us to conform analytical-theoretical proposals found in the literature, and to obtain several original results. Previous works indicate that, if the cloud magnetic fields before the collision are orthogonal to the direction of motion, then a strong inhibition of star formation will occur during a cloud-cloud shock, whereas if those magnetic fields are parallel to the direction of motion, star formation will be stimulated. Our treatment of the problem confirmed numerically those results, and further allowed us to quantify the relative star forming efficiencies in each case. Moreover, we propose and analyse an intermediate case where the field of one of the clouds is orthogonal to the motion and the field of the other one is parallel to the motion. We conclude that, in this case, the rate at which the star formation occurs has a value also intermediate between the two extreme cases we mentioned above. Besides that we study the case in which the fields are orthogonal to the direction of the motion but, instead of being parallel to each other, they are anti-parallel, and we obtained for this case the corresponding variation of the star formation rate due to this alteration of the field configuration. This last case has not been studied in the literature before. Our study allows us to obtain, from the simulations, the rate of star formation in each case, as well as the temporal dependence of that rate as each collision evolves, what we do in detail for one of the cases in particular. The values we obtain for the rate of star formation are in accordance with those expected from the presently existing observational data
Resumo:
We present a study of nanostructured magnetic multilayer systems in order to syn- thesize and analyze the properties of periodic and quasiperiodic structures. This work evolved from the deployment and improvement of the sputtering technique in our labora- tories, through development of a methodology to synthesize single crystal ultrathin Fe (100) films, to the final goal of growing periodic and quasiperiodic Fe/Cr multilayers and investi- gating bilinear and biquadratic exchange coupling between ferromagnetic layer dependence for each generation. Initially we systematically studied the related effects between deposition parameters and the magnetic properties of ultrathin Fe films, grown by DC magnetron sput- tering on MgO(100) substrates. We modified deposition temperature and film thickness, in order to improve production and reproduction of nanostructured monocrystalline Fe films. For this set of samples we measured MOKE, FMR, AFM and XPS, with the aim of investi- gating their magnocrystalline and structural properties. From the magnetic viewpoint, the MOKE and FMR results showed an increase in magnetocrystalline anisotropy due to in- creased temperature. AFM measurements provided information about thickness and surface roughness, whereas XPS results were used to analyze film purity. The best set of parame- ters was used in the next stage: investigation of the structural effect on magnetic multilayer properties. In this stage multilayers composed of interspersed Fe and Cr films are deposited, following the Fibonacci periodic and quasiperiodic growth sequence on MgO (100) substrates. The behavior of MOKE and FMR curves exhibit bilinear and biquadratic exchange coupling between the ferromagnetic layers. By computationally adjusting magnetization curves, it was possible to determine the nature and intensity of the interaction between adjacent Fe layers. After finding the global minimum of magnetic energy, we used the equilibrium an- gles to obtain magnetization and magnetoresistance curves. The results observed over the course of this study demonstrate the efficiency and versatility of the sputtering technique in the synthesis of ultrathin films and high-quality multilayers. This allows the deposition of magnetic nanostructures with well-defined magnetization and magnetoresistance parameters and possible technological applications
Resumo:
In the present work we study the processes of heating in the high stellar atmosphere, with base in an analysis of behavior of the cromospheric and coronal emission for a sample of single stars classified as giant in the literature. The evolutionary status of the stars of the sample was determined from HIPPARCOS satellite trigonometric parallax measurements and from the Toulouse Genéve code. In this study we show the form of behavior of the CaII emission flux in spectral lines H and K F(CaII) and the X-ray emission flux in function of the rotation, number of Rossby Ro and depth in mass of the convective envelope. In this analysis we show that while the cromospheric activity is dominated clearly by a physical process of heating associated with the rotation, like a magnetic field produced by dynamo effect, the coronal activity seems to be influenced for a mechanism independent of the rotation. We show also that the effective role of the depth in massa of the convective envelope on the stellar activity has an important effect in the responsible physical process for the behavior of the activity in the atmosphere of the stars.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Ising and m-vector spin-glass models are studied, in the limit of infinite-range in-teractions, through the replica method. First, the m-vector spin glass, in the presence of an external uniform magnetic field, as well as of uniaxial anisotropy fields, is consi-dered. The effects of the anisotropics on the phase diagrams, and in particular, on the Gabay-Toulouse line, which signals the transverse spin-glass ordering, are investigated. The changes in the Gabay-Toulouse line, due to the presence of anisotropy fields which favor spin orientations along the Cartesian axes (m = 2: planar anisotropy; m = 3: cubic anisotropy), are also studied. The antiferromagnetic Ising spin glass, in the presence of uniform and Gaussian random magnetic fields, is investigated through a two-sublattice generalization of the Sherrington-Kirpaktrick model. The effects of the magnetic-field randomness on the phase diagrams of the model are analysed. Some confrontations of the present results with experimental observations available in the literature are discussed
Resumo:
In this work we have studied, by Monte Carlo computer simulation, several properties that characterize the damage spreading in the Ising model, defined in Bravais lattices (the square and the triangular lattices) and in the Sierpinski Gasket. First, we investigated the antiferromagnetic model in the triangular lattice with uniform magnetic field, by Glauber dynamics; The chaotic-frozen critical frontier that we obtained coincides , within error bars, with the paramegnetic-ferromagnetic frontier of the static transition. Using heat-bath dynamics, we have studied the ferromagnetic model in the Sierpinski Gasket: We have shown that there are two times that characterize the relaxation of the damage: One of them satisfy the generalized scaling theory proposed by Henley (critical exponent z~A/T for low temperatures). On the other hand, the other time does not obey any of the known scaling theories. Finally, we have used methods of time series analysis to study in Glauber dynamics, the damage in the ferromagnetic Ising model on a square lattice. We have obtained a Hurst exponent with value 0.5 in high temperatures and that grows to 1, close to the temperature TD, that separates the chaotic and the frozen phases
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Um minuncioso estudo das propriedades de confinamento em heterostructuras bidimensionais(poços quânticos) GaAs/AlxGa1_xAs, com interfaces graduais é realizado. Um modelo teórico que represente bem a variação da fração molar do alumínio nas interfaces, resultante do aparecimento de micro-rugosidades e ilhas durante os processos de crescimento e recozimento pós-crescimento da amostra, é elaborado. Vários perfis desta fração molar de alumínio nas interfaces são considerados. Soluções analíticas da equação de Schrodinger, na aproximação da massa efetiva constatne nas interfaces, resultando em equações transcendentais, que possibilitam a obtenção dos níveis de energia dos portadores, decorrentes do seu confinamento quântico, são apresentadas. Energias de ligação e de confinamento de excitons 2D, utilizando-se um método analítico e numerérico e a aproximação do potencial efetivo, são também calculadas. Resultados numéricos para os níveis de energia dos portadores e para as energias de ligação e de confinamento dos excitons 2D, em poços quânticos GaAs/Al0.35Ga0.65As não-abruptos, sem e com a presença de campo elétrico aplicado para vários perfis interfaciais da fração de molar, são mostrados. Para a obtenção desses resultados, faz-se uso do método dos degraus múltiplos e da técnica da matriz de transferência, e adota-se, como operador de energia cinética, o de Ben-Daniel e Duque para uma massa efetiva dependente da posição. Conclui-se que um modelo que leva em conta a existência de interfaces não-abruptas e seus diversos perfis é indispensável para uma melhor descrição das propriedades opto-eletrônicas de poços quânticos GaAs/AlxGa1-xAs, enquanto que a aproximação das interfaces abruptas apresenta-se bastante limitada
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico