955 resultados para Conditional entropy
Resumo:
In this paper we propose a fast adaptive Importance Sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First we estimate the minimum Cross-Entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level; finally, the tilting parameter just found is used to estimate the overflow probability of interest. We recognize three distinct properties of the method which together explain why the method works well; we conjecture that they hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.
Resumo:
Most of the common techniques for estimating conditional probability densities are inappropriate for applications involving periodic variables. In this paper we introduce two novel techniques for tackling such problems, and investigate their performance using synthetic data. We then apply these techniques to the problem of extracting the distribution of wind vector directions from radar scatterometer data gathered by a remote-sensing satellite.
Resumo:
Most of the common techniques for estimating conditional probability densities are inappropriate for applications involving periodic variables. In this paper we apply two novel techniques to the problem of extracting the distribution of wind vector directions from radar catterometer data gathered by a remote-sensing satellite.
Resumo:
Most conventional techniques for estimating conditional probability densities are inappropriate for applications involving periodic variables. In this paper we introduce three related techniques for tackling such problems, and investigate their performance using synthetic data. We then apply these techniques to the problem of extracting the distribution of wind vector directions from radar scatterometer data gathered by a remote-sensing satellite.
Resumo:
Minimization of a sum-of-squares or cross-entropy error function leads to network outputs which approximate the conditional averages of the target data, conditioned on the input vector. For classifications problems, with a suitably chosen target coding scheme, these averages represent the posterior probabilities of class membership, and so can be regarded as optimal. For problems involving the prediction of continuous variables, however, the conditional averages provide only a very limited description of the properties of the target variables. This is particularly true for problems in which the mapping to be learned is multi-valued, as often arises in the solution of inverse problems, since the average of several correct target values is not necessarily itself a correct value. In order to obtain a complete description of the data, for the purposes of predicting the outputs corresponding to new input vectors, we must model the conditional probability distribution of the target data, again conditioned on the input vector. In this paper we introduce a new class of network models obtained by combining a conventional neural network with a mixture density model. The complete system is called a Mixture Density Network, and can in principle represent arbitrary conditional probability distributions in the same way that a conventional neural network can represent arbitrary functions. We demonstrate the effectiveness of Mixture Density Networks using both a toy problem and a problem involving robot inverse kinematics.
Resumo:
Most of the common techniques for estimating conditional probability densities are inappropriate for applications involving periodic variables. In this paper we introduce three novel techniques for tackling such problems, and investigate their performance using synthetic data. We then apply these techniques to the problem of extracting the distribution of wind vector directions from radar scatterometer data gathered by a remote-sensing satellite.
Resumo:
It is well known that one of the obstacles to effective forecasting of exchange rates is heteroscedasticity (non-stationary conditional variance). The autoregressive conditional heteroscedastic (ARCH) model and its variants have been used to estimate a time dependent variance for many financial time series. However, such models are essentially linear in form and we can ask whether a non-linear model for variance can improve results just as non-linear models (such as neural networks) for the mean have done. In this paper we consider two neural network models for variance estimation. Mixture Density Networks (Bishop 1994, Nix and Weigend 1994) combine a Multi-Layer Perceptron (MLP) and a mixture model to estimate the conditional data density. They are trained using a maximum likelihood approach. However, it is known that maximum likelihood estimates are biased and lead to a systematic under-estimate of variance. More recently, a Bayesian approach to parameter estimation has been developed (Bishop and Qazaz 1996) that shows promise in removing the maximum likelihood bias. However, up to now, this model has not been used for time series prediction. Here we compare these algorithms with two other models to provide benchmark results: a linear model (from the ARIMA family), and a conventional neural network trained with a sum-of-squares error function (which estimates the conditional mean of the time series with a constant variance noise model). This comparison is carried out on daily exchange rate data for five currencies.
Resumo:
Using techniques from Statistical Physics, the annealed VC entropy for hyperplanes in high dimensional spaces is calculated as a function of the margin for a spherical Gaussian distribution of inputs.
Resumo:
The concept of entropy rate is well defined in dynamical systems theory but is impossible to apply it directly to finite real world data sets. With this in mind, Pincus developed Approximate Entropy (ApEn), which uses ideas from Eckmann and Ruelle to create a regularity measure based on entropy rate that can be used to determine the influence of chaotic behaviour in a real world signal. However, this measure was found not to be robust and so an improved formulation known as the Sample Entropy (SampEn) was created by Richman and Moorman to address these issues. We have developed a new, related, regularity measure which is not based on the theory provided by Eckmann and Ruelle and proves a more well-behaved measure of complexity than the previous measures whilst still retaining a low computational cost.