994 resultados para Commercial Concentration
Resumo:
Anaemia is amongst the major complications of malaria, a major public health problem in the Amazon Region in Latin America. We examined the haemoglobin (Hb) concentrations of malaria-infected patients and compared it to that of malaria-negative febrile patients and afebrile controls. The haematological parameters of febrile patients who had a thick-blood-smear performed at an infectious diseases reference centre of the Brazilian Amazon between December 2009-January 2012 were retrieved together with clinical data. An afebrile community control group was composed from a survey performed in a malaria-endemic area. Hb concentrations and anaemia prevalence were analysed according to clinical-epidemiological status and demographic characteristics. In total, 7,831 observations were included. Patients with Plasmodium falciparum infection had lower mean Hb concentrations (10.5 g/dL) followed by P. vivax-infected individuals (12.4 g/dL), community controls (12.8 g/dL) and malaria-negative febrile patients (13.1 g/dL) (p < 0.001). Age, gender and clinical-epidemiological status were strong independent predictors for both outcomes. Amongst malaria-infected individuals, women in the reproductive age had considerably lower Hb concentrations. In this moderate transmission intensity setting, both vivax and falciparum malaria are associated with reduced Hb concentrations and risk of anaemia throughout a wide age range.
Resumo:
INTRODUCTION: Rivaroxaban (RXA) is licensed for prophylaxis of venous thromboembolism after major orthopaedic surgery of the lower limbs. Currently, no test to quantify RXA in plasma has been validated in an inter-laboratory setting. Our study had three aims: to assess i) the feasibility of RXA quantification with a commercial anti-FXa assay, ii) its accuracy and precision in an inter-laboratory setting, and iii) the influence of 10mg of RXA on routine coagulation tests. METHODS: The same chromogenic anti-FXa assay (Hyphen BioMed) was used in all participating laboratories. RXA calibrators and sets of blinded probes (aim ii.) were prepared in vitro by spiking normal plasma. The precise RXA content was assessed by high-pressure liquid chromatography-tandem mass spectrometry. For ex-vivo studies (aim iii), plasma samples from 20 healthy volunteers taken before and 2 - 3hours after ingestion of 10mg of RXA were analyzed by participating laboratories. RESULTS: RXA can be assayed chromogenically. Among the participating laboratories, the mean accuracy and the mean coefficient of variation for precision of RXA quantification were 7.0% and 8.8%, respectively. Mean RXA concentration was 114±43μg/L .RXA significantly altered prothrombin time, activated partial thromboplastin time, factor analysis for intrinsic and extrinsic factors. Determinations of thrombin time, fibrinogen, FXIII and D-Dimer levels were not affected. CONCLUSIONS: RXA plasma levels can be quantified accurately and precisely by a chromogenic anti-FXa assay on different coagulometers in different laboratories. Ingestion of 10mg RXA results in significant alterations of both PT- and aPTT-based coagulation assays.
Resumo:
Introduct ion The Surviving Sepsis Campaign (SSC) indicates that a lactate (LT) concentration greater than 4ımmol/l indicates early resuscitation bundles. However, several recent studies have suggested that LT values lower than 4ımmol/l may be a prognostic marker of adverse outcome. The aim of this study was to identify clinical and analytical prognostic parameters in severe sepsis (SS) or septic shock (ShS) according to quartiles of blood LT concentration. Methods A cohort study was designed in a polyvalent ICU. We studied demographic, clinical and analytical parameters in 148 critically ill adults, within 24ıhours from SS or ShS onset according to SSC criteria. We tested for diı erences in baseline characteristics by lactate interval using a KruskalıWallis test for continuous data or a chi-square test for categorical data and reported the median and interquartile ranges; SPSS version 15.0 (SPSS Inc., Chicago, IL, USA). Results We analyzed 148 consecutive episodes of SS (16%) or ShS (84%). The median age was 64 (interquartile range, 48.7 to 71)ıyears; male: 60%. The main sources of infection were respiratory tract 38% and intra-abdomen 45%; 70.7% had medical pathology. Mortality at 28ıdays was 22.7%. Quartiles of blood LT concentration were quartile 1 (Q1): 1.87ımmol/l or less, quartile 2 (Q2): 1.88 to 2.69ımmol/l, quartile 3 (Q3): 2.7 to 4.06ımmol/l, and quartile 4 (Q4): 4.07ımmol/l or greater (Tableı1). The median LT concentrations of each quartile were 1.43 (Q1), 2.2 (Q2), 3.34 (Q3), and 5.1 (Q4) mmol/l (Pı<0.001). The diı erences between these quartiles were that the patients in Q1 had signiı cantly lower APACHE II scores (Pı=ı0.04), SOFA score (Pı=ı0.024), number of organ failures (NOF) (Pı<0.001) and ICU mortality (Pı=ı0.028), compared with patients in Q2, Q3 and Q4. Patients in Q1 had signiı cantly higher cholesterol (Pı=ı0.06) and lower procalcitonin (Pı=ı0.05) at enrolment. At the extremes, patients in Q1 had decreased 28-day mortality (Pı=ı0.023) and, patients in Q4 had increased 28-day mortality, compared with the other quartiles of patients (Pı=ı0.009). Interestingly, patients in Q2 had signiı cant increased mortality compared with patients in Q1 (Pı=ı0.043), whereas the patients in Q2 had no signiı cant diı erence in 28-day mortality compared with patients in Q3. Conclusion Adverse outcomes and several potential risk factors, including organ failure, are signiı cantly associated with higher quartiles of LT concentrations. It may be useful to revise the cutoı value of lactate according to the SSC (4 mmol/l).
Resumo:
After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc ) in excess of those in oxygen (CMRO2 ) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1-2 min of activation.