943 resultados para Cement-Based Composites
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective. This study aimed to investigate the surface roughness of composite resins subjected to thermal cycles procedure. Materials and methods. Two microfill, four microhybrid and four nanofill composites were used. The surface roughness (Ra) was initially measured in a profilometer using a cut-off 0f 0.25 mm, after 3000 and 10,000 thermal cycles. Data were subjected to ANOVA and Fischer's test (alpha = 0.05). Results. Overall, 3000 thermal cycles increased the surface roughness values for all materials and there was a trend in all groups to decrease the roughness after 10,000 thermal cycles. Conclusions. The composition of material, including the type of organic matrix, could be more relevant to roughness maintenance over time than the general behavior of composites based on particles fillers. The maintenance of smooth surface in resin-based composite restorations is totally dependent of organic composition of the material.
Resumo:
Carbon fiber reinforced carbon composites can be made by iterative liquid impregnation or gas phase carbon deposition routes. In both cases, at the final processing stage the carbon fiber is embedded in carbon matrix which results in unique properties such as low density, high thermal conductivity and thermal shock resistance, low thermal expansion and high modulus, in relation to other refractory materials. In the present study assembled three-directional and four-directional preforms, having 50% volume of pores, were densified by iterative cycles of thermoset resin impregnation followed by pyrolysis under inert atmosphere, until appropriate densities were achieved. The thermoset resin is converted in a carbon matrix during pyrolysis. The iterative manufacturing process of the carbon fiber reinforced carbon composites is evaluated by means of nondestructive techniques based on X-ray computed tomography and electrical resistivity. X-ray computed tomography gives a general mapping view of the filling pores of the preforms which impacts results of the electrical resistivity. After six processing cycles and heat treatments up to 2000?, the final densities of the three-directional and four-directional carbon fiber reinforced carbon composites were 1.16g/cm(3) and an electrical resistivity of approximate to 0.07m. The configuration of preforms, three-directional or four-directional, did not alter the densification profile, in terms of increasing density and reducing porosity during the processing cycles.
Resumo:
Thermogravimetric analysis is one of the most common instrumental techniques used for the characterization of pastes, mortars and concretes based on both calcium hydroxide and Portland cement. Important information about pozzolanic materials can be assessed concerning calcium hydroxide consumption and the formation of new hydrated products. Nevertheless, in some cases, problems associated with the overlapped decomposition processes for hydrates make the analysis of obtained data difficult. In this paper, the use of high-resolution thermogravimetric analysis, a powerful technique that allows separating decomposition processes in analysis of hydrated binders, was performed for spent FCC catalyst-Portland cement pastes. These pastes were monitored for 1, 4, 8 h and 1, 2, 3, 7 and 28 curing days. In order to study the influence of the pozzolanic material (spent FCC catalyst), Portland cement replacements of 5, 15 and 30 % by mass were carried out. The presence of spent FCC catalyst in blended pastes modified the amount and the nature of the formed hydrates, mainly ettringite and stratlingite.
Resumo:
Biodegradable polymers are starting to be introduced as raw materials in the food-packaging market. Nevertheless, their price is very high. Starch, a fully biodegradable and bioderived polymer is a very interesting alternative due to its very low price. However, the use of starch as the polymer matrix for the production of rigid food packaging, such as trays, is limited due to its poor mechanical properties, high hidrophilicity and high density. This work presents two strategies to overcome the poor mechanical properties of starch. First, the plasticization of starch with several amounts of glycerol to produce thermoplastic starch (TPS) and second, the production of biocomposites by reinforcing TPS with promising fibers, such as barley straw and grape waste. The mechanical properties obtained are compared with the values predicted by models used in the field of composites; law of mixtures, Kerner-Nielsen and Halpin-Tsai. To evaluate if the materials developed are suitable for the production of food-packaging trays, the TPS-based materials with better mechanical properties were compared with commercial grades of oil-based polymers, polypropylene (PP) and polyethylene-terphthalate (PET), and a biodegradable polymer, polylactic acid (PLA).
Resumo:
To evaluate the transdentinal cytotoxicity of resin-based luting cements (RBLCs), with no HEMA in their composition, to odontoblast-like cells. Human dentine discs 0.3 mm thick were adapted to artificial pulp chambers (APCs) and placed in wells of 24-well plates containing 1 mL of culture medium (DMEM). Two categories of HEMA-free RBLCs were evaluated: group 1, self-adhesive Rely X Unicem (RU; 3M ESPE), applied directly to the dentine substrate; and group 2, Rely X ARC (RARC; 3M ESPE), applied to dentine previously acid-etched and treated with a bonding agent. In group 3 (control), considered as representing 100% cell metabolic activity, no treatment was performed on dentine. The APC/disc sets were incubated for 24 h or 7 days at 37 °C and 5% CO2 . Then, the extracts (DMEM + dental materials components that diffused through dentine) were applied to cultured odontoblast-like MDPC-23 cells for 24 h. After that, the cell viability (MTT assay), cell morphology (SEM), total protein production (TP) and alkaline phosphatase (ALP) activity were assessed. Data from MTT assay and TP production were analysed by Kruskal-Wallis and Mann-Whitney tests (α = 5%). Data from ALP activity were analysed by one-way anova and Tukey's test (α = 5%). In group 1, a slight reduction in cell viability (11.6% and 16.8% for 24-h and 7-day periods, respectively) and ALP activity (13.5% and 17.9% for 24-h and 7-day periods, respectively) was observed, with no significant difference from group 3 (control) (P > 0.05). In group 2, a significant reduction in cell viability, TP production and ALP activity compared with group 3 (control) occurred (P < 0.05), regardless of incubation time. Alteration in MDPC-23 cell morphology was observed only in group 2. HEMA-free Rely X ARC cement caused greater toxicity to odontoblast-like MDPC-23 cells than did Rely X Unicem cement when both resin-based luting materials were applied to dentine as recommended by the manufacturer.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Research on the micro-structural characterization of metal-matrix composites uses X-ray computed tomography to collect information about the interior features of the samples, in order to elucidate their exhibited properties. The tomographic raw data needs several steps of computational processing in order to eliminate noise and interference. Our experience with a program (Tritom) that handles these questions has shown that in some cases the processing steps take a very long time and that it is not easy for a Materials Science specialist to interact with Tritom in order to define the most adequate parameter values and the proper sequence of the available processing steps. For easing the use of Tritom, a system was built which addresses the aspects described before and that is based on the OpenDX visualization system. OpenDX visualization facilities constitute a great benefit to Tritom. The visual programming environment of OpenDX allows an easy definition of a sequence of processing steps thus fulfilling the requirement of an easy use by non-specialists on Computer Science. Also the possibility of incorporating external modules in a visual OpenDX program allows the researchers to tackle the aspect of reducing the long execution time of some processing steps. The longer processing steps of Tritom have been parallelized in two different types of hardware architectures (message-passing and shared-memory); the corresponding parallel programs can be easily incorporated in a sequence of processing steps defined in an OpenDX program. The benefits of our system are illustrated through an example where the tool is applied in the study of the sensitivity to crushing – and the implications thereof – of the reinforcements used in a functionally graded syntactic metallic foam.
Resumo:
Objectives. To verify the hypothesis that crack analysis and a mechanical test would rank a series of composites in a similar order with respect to polymerization stress. Also, both tests would show similar relationships between stress and composite elastic modulus and/or shrinkage. Methods. Soda-lime glass discs (2-mm thick) with a central perforation (3.5-mm diameter) received four Vickers indentations 500 mu m from the cavity margin. The indent cracks were measured (500x) prior and 10 min after the cavity was restored with one of six materials (Kalore/KL, Gradia/GR, Ice/IC, Wave/WV, Majesty Flow/MF, and Majesty Posterior/MP). Stresses at the indent site were calculated based on glass fracture toughness and increase in crack length. Stress at the bonded interface was calculated using the equation for an internally pressurized cylinder. The mechanical test used a universal testing machine and glass rods (5-mm diameter) as substrate. An extensometer monitored specimen height (2 mm). Nominal stress was calculated dividing the maximum shrinkage force by the specimen cross-sectional area. Composite elastic modulus was determined by nanoindentation and post-gel shrinkage was measured using strain gages. Data were subjected to one-way ANOVA/Tukey or Kruskal-Wallis/Mann-Whitney tests (alpha: 5%). Results. Both tests grouped the composites in three statistical subsets, with small differences in overlapping between the intermediate subset (MF, WV) and the highest (MP, IC) or the lowest stress materials (KL, GR). Higher stresses were developed by composites with high modulus and/or high shrinkage. Significance. Crack analysis demonstrated to be as effective as the mechanical test to rank composites regarding polymerization stress. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
During copulation, spermatophores produced by male coleoid cephalopods undergo the spermatophoric reaction, a complex process of evagination that culminates in the attachment of the spermatangium (everted spermatophore containing the sperm mass) on the female's body. To better understand this complicated phenomenon, the present study investigated the functional morphology of the spermatophore of the squid Doryteuthis plei applying in vitro analysis of the reaction, as well as light and electron microscopy investigation of spermatangia obtained either in vitro, or naturally attached on females. Hitherto unnoticed functional features of the loliginid spermatophore require a reappraisal of some important processes involved in the spermatophoric reaction. The most striking findings concern the attachment mechanism, which is not carried out solely by cement adhesive material, as previously believed, but rather by an autonomous, complex process performed by multiple structures during the spermatophoric reaction. During evagination, the ejaculatory apparatus provides anchorage on the targeted tissue, presumably due to the minute stellate particles present in the exposed spiral filament. Consequently, the ejaculatory apparatus maintains the attachment of the tip of the evaginating spermatophore until the cement body is extruded. Subsequently, the cement body passes through a complex structural rearrangement, which leads to the injection of both its viscid contents and pointed oral region onto the targeted tissue. The inner membrane at the oral region of the cement body contains numerous stellate particles attached at its inner side; eversion of this membrane exposes these sharp structures, which presumably adhere to the tissue and augment attachment. Several naturally attached spermatangia were found with their bases implanted at the deposition sites, and the possible mechanisms of perforation are discussed based on present evidence. The function of the complex squid spermatophore and its spermatophoric reaction is revisited in light of these findings. J. Morphol. 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Marian, J.E.A.R. and Domaneschi, O. 2012. Unraveling the structure of squids spermatophores: a combined approach based on Doryteuthis plei (Blainville, 1823) (Cephalopoda: Loliginidae). Acta Zoologica (Stockholm) 93: 281307. Male coleoid cephalopods produce elaborate spermatophores, which function autonomously outside the male body during copulation, undergoing a complicated process of evagination. In order to contribute to the understanding of this unique structure, this study investigated the morphology of the spermatophore of Doryteuthis plei applying several microscopy techniques. A hitherto unreported, much more complex structural arrangement was revealed for the loliginid spermatophore, the most striking findings being: (1) the complex, layered structure of the middle membrane, which bears an additional, chemically distinct segment surrounding part of the cement body; (2) the presence of a space between the inner tunic and middle membrane filled with a fine reticulated material; (3) the presence of stellate particles not only embedded in the spiral filament, but also closely applied to the inner membrane at the level of the cement body; (4) the presence of a pre-oral chamber in the cap region; and (5) the complex organization of the cement body, formed by two distinct layers encompassing contents of different chemical and textural properties. Careful literature reassessment suggests several of these features are common to loliginids, and to some extent to other squids. Their possible functional implications are discussed in light of our knowledge of the spermatophoric reaction mechanics.
Resumo:
The purpose of this study was to evaluate the effect of different heat-treatment strategies for a ceramic primer on the shear bond strength of a 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-based resin cement to a yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Specimens measuring 4.5 x 3.5 x 4.5 mm(3) were produced from Y-TZP presintered cubes and embedded in polymethyl methacrylate (PMMA). Following finishing, the specimens were cleaned using an ultrasound device and distilled water and randomly divided into 10 experimental groups (n=14) according to the heat treatment of the ceramic primer and aging condition. The strategies used for the experimental groups were: GC (control), without primer; G20, primer application at ambient temperature (20 degrees C); G45, primer application + heat treatment at 45 degrees C; G79, primer application + heat treatment at 79 degrees C; and G100, primer application + heat treatment at 100 degrees C. The specimens from the aging groups were submitted to thermal cycling (6000 cycles, 5 degrees C/55 degrees C, 30 seconds per bath) after 24 hours. A cylinder of MDP-based resin cement (2.4 mm in diameter) was constructed on the ceramic surface of the specimens of each experimental group and stored for 24 hours at 37 degrees C. The specimens were submitted to a shear bond strength test (n=14). Thermal gravimetric analysis was performed on the ceramic primer. The data obtained were statistically analyzed by two-way analysis of variance and the Tukey test (alpha=0.05). The experimental group G79 without aging (7.23 +/- 2.87 MPa) presented a significantly higher mean than the other experimental groups without aging (GC: 2.81 +/- 1.5 MPa; G20: 3.38 +/- 2.21 MPa; G100: 3.96 +/- 1.57 MPa), showing no difference from G45 only (G45: 6 +/- 3.63 MPa). All specimens of the aging groups debonded during thermocycling and were considered to present zero bond strength for the statistical analyses. In conclusion, heat treatment of the metal/zirconia primer improved bond strength under the initial condition but did not promote stable bonding under the aging condition.
Resumo:
The aim of this paper is to study the feasibility of using cellulose fibers obtained from an agricultural waste, hemp core (Cannabis Sativa L), through different new environmental friendly cooking processes for fiber-cement production. The physical and mechanical properties of the fiber reinforced concrete, which depend on the nature and morphology of the fibers, matrix properties and the interactions between them, must be kept between the limits required for its application. Therefore, the morphology of the fibers and how its use affects the flocculation, retention and drainage processes in the fiber-cement manufacture, and the mechanical and physical properties of the fiber-cement product have been studied. The use of pulp obtained by means of the hemp core cooking in ethanolamine at 60% concentration at 180 degrees C during 90 min resulted in the highest solids retention and the best mechanical properties among the studied hemp core pulps. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Urease (Urs) was immobilized in electrochemically prepared polypyrrole (PPy) and the resulting films were characterized by cyclic voltammetry, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet visible spectroscopy (UV-VIS). The enzymatic activity of Urs entrapped in the PPy matrix was confirmed by the catalytic conversion of urea into carbon dioxide and ammonia, when urea was detected amperometrically at different concentrations in standard samples and commercial fertilizers. The PPy/Urs biosensors exhibited selectivity, a relatively high efficiency at urea concentrations below 3.0 mmol L-1, and a sensitivity to urea of 2.41 mu A cm(-2) mmol(-1) L (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-curve behavior are studied using single-edge notched bend specimens. The sisal fibers used were examined using atomic force microscopy for fiber bundle structures. The underlying crack/microstructure interactions and fracture mechanisms are elucidated via in situ optical microscopy and ex-situ environmental scanning microscopy techniques. The observed crack bridging mechanisms are modeled using small and large scale bridging concepts. The implications of the results are then discussed for the design of eco-friendly building materials that are reinforced with natural and polypropylene fibers.