942 resultados para Carbonate radical


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1989, the American visual artist Cindy Sherman produced her ‘Sex Pictures’, a number of photographic images of two medical mannequins whose bodies had been dismembered and reconstructed to form abstract configurations that alluded to pornographic poses. Sherman's series was a response to the National Endowment for the Arts controversy, in which American artists such as Andres Serrano and the late Robert Mapplethorpe, whose work was considered obscene by the Republican Congress, were censored. Many artists in the culture-war period had their grants rescinded. The American avant-garde writer Kathy Acker published My Mother: Demonology in 1993. A prominent concern of Acker's in the work is what she termed her ‘writing freedom’ in a climate of cultural expurgation by the Republican elite. In particular, Acker was worried that she was ‘internalizing certain censorships’. This article addresses Sherman's and Acker's work in a comparative context to explore, through the theoretical work of Julia Kristeva, the ways in which their responses to a climate of political censorship can be read as forms of intimate revolt. Kristeva's notion of ejection—the act of placing something beyond the scope of the possible—transpires as ‘a condition of art's creation’ in Sherman's and Acker's work. Acker and Sherman use the pornographic reference in their work to disrupt and dislocate the narrative and image from convention in order to de-eroticize the body, against heteronormativity's terms, and empower the female sex organs. Eversion—that is, in Sherman's and Acker's works, the act of turning the institutional and maternal body inside out—emerges as a mode of resistance to the danger of the writer and the artist internalizing cultural restrictions. The everted body creates a site of radical interiority which becomes the (impossible) site for the radical (re-)embodiment of the feminine subject.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a biosensor based on a glassy carbon electrode (GCE) was used for the evaluation of the total antioxidant capacity (TAC) of flavours and flavoured waters. This biosensor was constructed by immobilising purine bases, guanine and adenine, on a GCE. Square wave voltammetry (SWV) was selected for the development of this methodology. Damage caused by the reactive oxygen species (ROS), superoxide radical (O2·−), generated by the xanthine/xanthine oxidase (XOD) system on the DNA-biosensor was evaluated. DNA-biosensor encountered with oxidative lesion when it was in contact with the O2·−. There was less oxidative damage when reactive antioxidants were added. The antioxidants used in this work were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants are capable of scavenging the superoxide radical and therefore protect the purine bases immobilized on the GCE surface. The results demonstrated that the DNA-based biosensor is suitable for the rapid assess of TAC in beverages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integrity of DNA purine bases was herein used to evaluate the antioxidant capacity. Unlike other DNA-based antioxidant sensors reported so far, the damaging agent chosen was the O 2 radical enzymatically generated by the xanthine/xanthine oxidase system. An adenine-rich oligonucleotide was adsorbed on carbon paste electrodes and subjected to radical damage in the presence/absence of several antioxidant compounds. As a result, partial damage on DNA was observed. A minor product of the radical oxidation was identified by cyclic voltammetry as a diimine adenine derivative also formed during the electrochemical oxidation of adenine/guanine bases. The protective efficiency of several antioxidant compounds was evaluated after electrochemical oxidation of the remaining unoxidized adenine bases, by measuring the electrocatalytic current of NADH mediated by the adsorbed catalyst species generated. A comparison between O 2 and OH radicals as a source of DNA lesions and the scavenging efficiency of various antioxidant compounds against both of them is discussed. Finally, the antioxidant capacity of beverages was evaluated and compared with the results obtained with an optical method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em História Contemporânea Institucional e Política de Portugal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recensão de: Claire Bishop, "Radical Museology: or What’s ‘Contemporary’ In Museums of Contemporary Art?", Londres: Koenig Books, 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2009 International Society of Urological Pathology consensus conference in Boston made recommendations regarding the standardization of pathology reporting of radical prostatectomy specimens. Issues relating to the substaging of pT2 prostate cancers according to the TNM 2002/2010 system, reporting of tumor size/volume and zonal location of prostate cancers were coordinated by working group 2. A survey circulated before the consensus conference demonstrated that 74% of the 157 participants considered pT2 substaging of prostate cancer to be of clinical and/or academic relevance. The survey also revealed a considerable variation in the frequency of reporting of pT2b substage prostate cancer, which was likely a consequence of the variable methodologies used to distinguish pT2a from pT2b tumors. Overview of the literature indicates that current pT2 substaging criteria lack clinical relevance and the majority (65.5%) of conference attendees wished to discontinue pT2 substaging. Therefore, the consensus was that reporting of pT2 substages should, at present, be optional. Several studies have shown that prostate cancer volume is significantly correlated with other clinicopathological features, including Gleason score and extraprostatic extension of tumor; however, most studies fail to demonstrate this to have prognostic significance on multivariate analysis. Consensus was reached with regard to the reporting of some quantitative measure of the volume of tumor in a prostatectomy specimen, without prescribing a specific methodology. Incorporation of the zonal and/or anterior location of the dominant/index tumor in the pathology report was accepted by most participants, but a formal definition of the identifying features of the dominant/index tumor remained undecided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxalatecarbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO2. In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil.