911 resultados para Building materials.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanomaterials with a hexagonally ordered atomic structure, e.g., graphene, carbon and boron nitride nanotubes, and white graphene (a monolayer of hexagonal boron nitride) possess many impressive properties. For example, the mechanical stiffness and strength of these materials are unprecedented. Also, the extraordinary electronic properties of graphene and carbon nanotubes suggest that these materials may serve as building blocks of next generation electronics. However, the properties of pristine materials are not always what is needed in applications, but careful manipulation of their atomic structure, e.g., via particle irradiation can be used to tailor the properties. On the other hand, inadvertently introduced defects can deteriorate the useful properties of these materials in radiation hostile environments, such as outer space. In this thesis, defect production via energetic particle bombardment in the aforementioned materials is investigated. The effects of ion irradiation on multi-walled carbon and boron nitride nanotubes are studied experimentally by first conducting controlled irradiation treatments of the samples using an ion accelerator and subsequently characterizing the induced changes by transmission electron microscopy and Raman spectroscopy. The usefulness of the characterization methods is critically evaluated and a damage grading scale is proposed, based on transmission electron microscopy images. Theoretical predictions are made on defect production in graphene and white graphene under particle bombardment. A stochastic model based on first-principles molecular dynamics simulations is used together with electron irradiation experiments for understanding the formation of peculiar triangular defect structures in white graphene. An extensive set of classical molecular dynamics simulations is conducted, in order to study defect production under ion irradiation in graphene and white graphene. In the experimental studies the response of carbon and boron nitride multi-walled nanotubes to irradiation with a wide range of ion types, energies and fluences is explored. The stabilities of these structures under ion irradiation are investigated, as well as the issue of how the mechanism of energy transfer affects the irradiation-induced damage. An irradiation fluence of 5.5x10^15 ions/cm^2 with 40 keV Ar+ ions is established to be sufficient to amorphize a multi-walled nanotube. In the case of 350 keV He+ ion irradiation, where most of the energy transfer happens through inelastic collisions between the ion and the target electrons, an irradiation fluence of 1.4x10^17 ions/cm^2 heavily damages carbon nanotubes, whereas a larger irradiation fluence of 1.2x10^18 ions/cm^2 leaves a boron nitride nanotube in much better condition, indicating that carbon nanotubes might be more susceptible to damage via electronic excitations than their boron nitride counterparts. An elevated temperature was discovered to considerably reduce the accumulated damage created by energetic ions in both carbon and boron nitride nanotubes, attributed to enhanced defect mobility and efficient recombination at high temperatures. Additionally, cobalt nanorods encapsulated inside multi-walled carbon nanotubes were observed to transform into spherical nanoparticles after ion irradiation at an elevated temperature, which can be explained by the inverse Ostwald ripening effect. The simulation studies on ion irradiation of the hexagonal monolayers yielded quantitative estimates on types and abundances of defects produced within a large range of irradiation parameters. He, Ne, Ar, Kr, Xe, and Ga ions were considered in the simulations with kinetic energies ranging from 35 eV to 10 MeV, and the role of the angle of incidence of the ions was studied in detail. A stochastic model was developed for utilizing the large amount of data produced by the molecular dynamics simulations. It was discovered that a high degree of selectivity over the types and abundances of defects can be achieved by carefully selecting the irradiation parameters, which can be of great use when precise pattering of graphene or white graphene using focused ion beams is planned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most studies involving cement-stabilized soil blocks (CSSB) concern material properties, such as the characteristics of erosion and strength and how the composition of the block affects these properties. Moreover, research has been conducted on the performance of various mortars, investigating their material properties and the tensile bond strength between CSSB units and mortar. In contrast, very little is currently known about CSSB masonry structural behavior. Because structural design codes of traditional masonry buildings were well developed over the past century, many of the same principles may be applicable to CSSB masonry buildings. This paper details the topic of flexural behavior of CSSB masonry walls and whether the Masonry Standards Joint Committee (MSJC) code can be applied to this material for improved safety of such buildings. DOI: 10.1061/(ASCE)MT.1943-5533.0000566. (C) 2013 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of a building integrated photovoltaic system (BIPV) has to be commendable, not only on the electrical front but also on the thermal comfort front, thereby fulfilling the true responsibility of an energy providing shelter. Given the low thermal mass of BIPV systems, unintended and undesired outcomes of harnessing solar energy - such as heat gain into the building, especially in tropical regions - have to be adequately addressed. Cell (module) temperature is one critical factor that affects both the electrical and the thermal performance of such installations. The current paper discusses the impact of cell (module) temperature on both the electrical efficiency and thermal comfort by investigating the holistic performance of one such system (5.25 kW(p)) installed at the Centre for Sustainable Technologies in the Indian Institute of Science, Bangalore. Some recommendations (passive techniques) for improving the performance and making BIPV structures thermally comfortable have been listed out. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rechargeable batteries based on Li and Na ions have been growing leaps and bounds since their inception in the 1970s. They enjoy significant attention from both the fundamental science point of view and practical applications ranging from portable electronics to hybrid vehicles and grid storage. The steady demand for building better batteries calls for discovery, optimisation and implementation of novel positive insertion (cathode) materials. In this quest, chemists have tried to unravel many future cathode materials by taking into consideration their eco-friendly synthesis, material/process economy, high energy density, safety, easy handling and sustainability. Interestingly, sulfate-based cathodes offer a good combination of sustainable syntheses and high energy density owing to their high-voltage operation, stemming from electronegative SO42- units. This review delivers a sneak peak at the recent advances in the discovery and development of sulfate-containing cathode materials by focusing on their synthesis, crystal structure and electrochemical performance. Several family of cathodes are independently discussed. They are 1) fluorosulfates AMSO(4)F], 2) bihydrated fluorosulfates AMSO(4)F2H(2)O], 3) hydroxysulfate AMSO(4)OH], 4) bisulfates A(2)M(SO4)(2)], 5) hydrated bisulfates A(2)M(SO4)(2)nH(2)O], 6) oxysulfates Fe-2(SO4)(2)O] and 7) polysulfates A(2)M(2)(SO4)(3)]. A comparative study of these sulfate-based cathodes has been provided to offer an outlook on the future development of high-voltage polyanionic cathode materials for next-generation batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rechargeable batteries have propelled the wireless revolution and automobiles market over the past 25 years. Developing better batteries with improved energy density demands unveiling of new cathode ceramic materials with suitable diffusion channels and open framework structure. In this pursuit of achieving higher energy density, one approach is to realize enhanced redox voltage of insertion of ceramic compounds. This can be accomplished by incorporating highly electronegative anions in the cathode ceramics. Building on this idea, recently various sulphate- based compounds have been reported as high voltage cathode materials. The current article highlights the use of sulphate (SO4) based cathodes to realize the highest ever Fe3+/Fe2+ redox potentials in Li-ion batteries (LiFeSO4F fluorosulphate: 3.9V vs Li/Li+) and Na-ion batteries (Na2Fe2(SO4)(3) polysulphate: 3.8V vs Na/Na+). These sulphate-based cathode ceramic compounds pave way for newer avenues to design better batteries for future applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new liquid crystal device structure has been developed using a vertically grown Multi-Wall Carbon NanoTube (MWCNT) as a 3D electrode structure, which allows complicated phase only hologram to be displayed using conventional liquid crystal materials. The nanotubes act as an individual electrode sites that generate an electric field profile, dictating the refractive index profile with the liquid crystal cell. Changing the electric field applied makes it possible to tune the properties to modulate the light in an ideal kinoform. A perfect 3D image can be generated by a computer generated hologram by using the diffraction of the light from the hologram pixels to create an optical wave front that appears to come from 3D object. A multilevel phase modulating device based on nematic LC's is also under progress, which will be used with the LC/CNT devices on an LCOS backplane to project a full 3D image from the kinoform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many sources of information that discuss currents problems of food security point to the importance of farmed fish as an ideal food source that can be grown by poor farmers, (Asian Development Bank 2004). Furthermore, the development of improved strains of fish suitable for low-input aquaculture such as Tilapia, has demonstrated the feasibility of an approach that combines “cutting edge science” with accessible technology, as a means for improving the nutrition and livelihoods of both the urban poor and poor farmers in developing countries (Mair et al. 2002). However, the use of improved strains of fish as a means of reducing hunger and improving livelihoods has proved to be difficult to sustain, especially as a public good, when external (development) funding sources devoted to this area are minimal1. In addition, the more complicated problem of delivery of an aquaculture system, not just improved fish strains and the technology, can present difficulties and may go explicitly unrecognized (from Sissel Rogne, as cited by Silje Rem 2002). Thus, the involvement of private partners has featured prominently in the strategy for transferring to the public technology related to improved Tilapia strains. Partnering with the private sector in delivery schemes to the poor should take into account both the public goods aspect and the requirement that the traits selected for breeding “improved” strains meet the actual needs of the resource poor farmer. Other dissemination approaches involving the public sector may require a large investment in capacity building. However, the use of public sector institutions as delivery agents encourages the maintaining of the “public good” nature of the products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Usually, firms that produce innovative global products are discussed within the context of developed countries. New ventures in developing countries are typically viewed as low-cost product providers that generate technologically similar products to those produced by developed economies. However, this paper argues that some Chinese university spin-outs (USOs), although rare, have adopted a novel 'catch-up' strategy to build global products on the basis of indigenous platform technologies. This paper attempts to develop a conceptual framework to address the question: how do these specific Chinese USOs develop their innovation capabilities to build global products? In order to explore the idiosyncrasies of the specific USOs, this paper uses the multiple case studies method. The primary data sources are accessed through semi-structured interviews. In addition, archival data and other materials are used as secondary sources. The study analyses the configuration of capabilities that are needed for idiosyncratic growth, and maps them to the globalisation processes. This paper provides a strategic 'roadmap' as an explanatory guide to entrepreneurs, policy makers and investors to better understand the phenomena. © 2014 Inderscience Enterprises Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of short and long term service load tests were undertaken on the sixth floor of the full-scale, seven storey, reinforced concrete building at the Large Building Test Facility of the Building Research Establishment at Cardington. By using internally strain gauged reinforcing bars cast into an internal and external floor bay during the construction process it was possible to gain a detailed record of slab strains resulting from the application of several arrangements of test loads. Short term tests were conducted in December 1998 and long term monitoring then ensued until April 2001. This paper describes the test programmes and presents results to indicate slab behaviour for the various loading regimes.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A full-scale, seven-story, reinforced concrete building frame was constructed in-place at the Building Research Establishment's Cardington Laboratory, which encompassed a range of different concrete mixtures and advanced construction techniques. This provided an opportunity to assess in-place nondestructive test methods, namely the pullout test, and more specifically the Danish version, which has been known as the Lok test, on a systematic basis during the construction of the building. It was used in conjunction with both standard and temperature-matched cube specimens to assess its practicality and accuracy under site conditions. Strength correlations were determined using linear and power function regression analysis. Strength predictions from these were found to be in very good agreement with the compressive strengths of temperature-matched cube specimens. When a general correlation is used, however, estimates for compressive strength are likely to have 95% confidence limits of around '20% of the mean value of four results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation of carbonation in mortars and methods of measuring the degree of carbonation and pH change is presented. The mortars were manufactured using ordinary portland cement, pulverized fuel ash, ground granulated blast-furnace slag, metakaolin, and microsilica. The mortars were exposed to a carbon dioxide-rich environment 5% CO2 to accelerate carbonation. The resulting carbonation was measured using phenolphthalein indicator and thermogravimetric analysis. The pH of the pore fluid and a powdered sample, extracted from the mortar, was measured to give an accurate indication of the actual pH of the concrete. The pH of the extracted powder mortar sample was found to be similar to the pH of the pore fluid expressed from the mortars. The thermogravimetric analysis suggested two distinct regions of transport of CO2 within mortar, a surface region where convection was prevalent and a deeper region where diffusion was dominant. The use of microsilica has been shown to decrease the rate of carbonation, while pulverized fuel ash and ground granulated blast-furnace slag have a detrimental effect on carbonation. Metakaolin has little effect on carbonation.