927 resultados para Bioactive scaffolds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’apparato muscolo scheletrico è composto da strutture muscolari, articolari e ossee. Tali tessuti sono molto diversi tra loro e hanno proprietà meccaniche estremamente variabili, pertanto presentano una transizione graduale in corrispondenza della loro giunzione, onde evitare l’insorgere di concentrazioni di tensione. L’evoluzione ha portato alla formazione di particolari interfacce che permettono la corretta trasmissione dei carichi distribuendo le tensioni su una superficie più ampia in corrispondenza della giunzione. Le interfacce che vanno a inserirsi nell’osso vengono definite entesi e in particolare, in questa review, analizzeremo il caso di quelle tra tendini/legamenti e osso. In questo lavoro ci siamo anche concentrati sulla giunzione miotendinea, ovvero tra muscolo e tendine. Sono numerose le lesioni che riguardano muscoli, ossa, tendini o legamenti e molto spesso l’infortunio avviene a livello della giunzione. Quando ciò accade vi sono diverse strade, ciascuna con i suoi vantaggi e svantaggi: sutura, autograft, allograft o xenograft. Oltre a queste soluzioni si è fatta gradualmente più spazio la possibilità di realizzare degli scaffold che vadano temporaneamente a sostituire la parte danneggiata e a promuovere la sua rigenerazione, degradandosi man mano. L’elettrofilatura (Elettrospinning) è un processo produttivo che negli ultimi decenni si è affermato come tecnica per la fabbricazione di questi scaffold, fino a diventare uno tra i principali processi utilizzati dai ricercatori in questo campo. Questa tecnica infatti permette di realizzare scaffold di nanofibre porose utilizzando polimeri biodegradabili e soprattutto biocompatibili. Lo scopo della review è proprio quello di scoprire tutti i lavori e gli studi che utilizzano l’elettrofilatura per realizzare degli scaffold per interfacce, delineando così lo stato dell’arte sui progressi fatti e sulle varie tecniche utilizzate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of bone substitutes is highly researched an innovative material able to fill gaps with high mechanical performances and able to stimulate cell response, permitting the complete restoration of the bone portion. In this respect, the synthesis of new bioactive materials able to mimic the compositional, morphological and mechanical features of bone is considered as the elective approach for effective tissue regeneration. Hydroxyapatite (HA) is the main component of the inorganic part of bone. Additionally ionic substitution can be performed in the apatite lattice producing different effects, depending from the selected ions. Magnesium, in substitution of calcium, and carbonate, in substitution of phosphate, extensively present in the biological bones, are able to improve properties naturally present in the apatitic phase, (i.e. biomimicry, solubility e osteoinductive properties). Other ions can be used to give new useful properties, like antiresorptive or antimicrobial properties, to the apatitic phase. This thesis focused on the development of hydroxyapatite nanophases with multiple ionic substitutions including gallium, or zinc ions, in association with magnesium and carbonate, with the purpose to provide double synergistic functionality as osteogenic and antibacterial biomaterial. Were developed bioactive materials based on Sr-substituted hydroxyapatite in the form of sintered targets. The obtained targets were treated with Pulsed Plasma Deposition (PED) resulting in the deposition of thin film coatings able to improve the roughness and wettability of PEEK, enhancing its osteointegrability. Were investigated heterogeneous gas-solid reactions, addressed to the biomorphic transformations of natural 3D porous structures into bone scaffolds with biomimetic composition and hierarchical organization, for application in load-bearing sites. The kinetics of the different reactions of the process were optimized to achieve complete and controlled phase transformation, maintaining the original 3-D morphology. Massive porous scaffolds made of ion-substituted hydroxyapatite and bone-mimicking structure were developed and tested in 3-D cell culture models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The better understanding of mechanisms at the basis of host-pathogen interaction can represent a valid tool to increase productivity and contain economic losses in animal production through the maintenance of intestinal homeostasis. With this project, three preliminary in vitro studies were conducted with the aim of investigating how bioactive compounds could influence mechanisms of host-pathogen interaction in poultry and swine. Different panels of nature identical compounds, medium chain fatty acids, and plant extracts were employed against strains of Salmonella Typhimurium, Brachyspira hyodysenteriae, and Salmonella Enteritidis, respectively. When bacterial field strains were tested, the comparison between natural compounds and antibiotics was examined, with the aim of evaluating the role of the substances in the antibiotic-resistance context. Results demonstrate that bioactive compounds have positive effects on the host, the pathogen, or both in different experimental conditions. Additionally, when compared to antibiotics, bioactive compounds have proven to be valid alternatives to address the phenomenon of antibiotic resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viscosupplements, used for treating joint and cartilage diseases, restore the rheological properties of synovial fluid, regulate joint homeostasis and act as scaffolds for cell growth and tissue regeneration. Most viscosupplements are hydrogels composed of hyaluronic acid (HA) microparticles suspended in fluid HA. These microparticles are crosslinked with chemicals to assure their stability against enzyme degradation and to prolong the action of the viscosupplement. However, the crosslinking also modifies the mechanical, swelling and rheological properties of the HA microparticle hydrogels, with consequences on the effectiveness of the application. The aim of this study is to correlate the crosslinking degree (CD) with these properties to achieve modulation of HA/DVS microparticles through CD control. Because divinyl sulfone (DVS) is the usual crosslinker of HA in viscosupplements, we examined the effects of CD by preparing HA microparticles at 1:1, 2:1, 3:1, and 5:1 HA/DVS mass ratios. The CD was calculated from inductively coupled plasma spectrometry data. HA microparticles were previously sized to a mean diameter of 87.5 µm. Higher CD increased the viscoelasticity and the extrusion force and reduced the swelling of the HA microparticle hydrogels, which also showed Newtonian pseudoplastic behavior and were classified as covalent weak. The hydrogels were not cytotoxic to fibroblasts according to an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrophilic and lipophilic extracts of ten cultivars of Highbush and Rabbiteye Brazilian blueberries (Vaccinium corymbosum L. and Vacciniumashei Reade, respectively) that are used for commercial production were analysed for antioxidant activity by the FRAP, ORAC, ABTS and β-carotene-linoleate methods. Results were correlated to the amounts of carotenoids, total phenolics and anthocyanins. Brazilian blueberries had relatively high concentration of total phenolics (1,622-3,457 mg gallic acid equivalents per 100 g DW) and total anthocyanins (140-318 mg cyanidin-3-glucoside equivalents per 100 g DW), as well as being a good source of carotenoids. There was a higher positive correlation between the amounts of these compounds and the antioxidant activity of hydrophilic compared to lipophilic extracts. There were also significant differences in the level of bioactive compounds and antioxidant activities between different cultivars, production location and year of cultivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dipyrone (metamizole) is an analgesic pro-drug used to control moderate pain. It is metabolized in two major bioactive metabolites: 4-methylaminoantipyrine (4-MAA) and 4-aminoantipyrine (4-AA). The aim of this study was to investigate the participation of peripheral CB1 and CB2 cannabinoid receptors activation in the anti-hyperalgesic effect of dipyrone, 4-MAA or 4-AA. PGE2 (100ng/50µL/paw) was locally administered in the hindpaw of male Wistar rats, and the mechanical nociceptive threshold was quantified by electronic von Frey test, before and 3h after its injection. Dipyrone, 4-MAA or 4-AA was administered 30min before the von Frey test. The selective CB1 receptor antagonist AM251, CB2 receptor antagonist AM630, cGMP inhibitor ODQ or KATP channel blocker glibenclamide were administered 30min before dipyrone, 4-MAA or 4-AA. The antisense-ODN against CB1 receptor expression was intrathecally administered once a day during four consecutive days. PGE2-induced mechanical hyperalgesia was inhibited by dipyrone, 4-MAA, and 4-AA in a dose-response manner. AM251 or ODN anti-sense against neuronal CB1 receptor, but not AM630, reversed the anti-hyperalgesic effect mediated by 4-AA, but not by dipyrone or 4-MAA. On the other hand, the anti-hyperalgesic effect of dipyrone or 4-MAA was reversed by glibenclamide or ODQ. These results suggest that the activation of neuronal CB1, but not CB2 receptor, in peripheral tissue is involved in the anti-hyperalgesic effect of 4-aminoantipyrine. In addition, 4-methylaminoantipyrine mediates the anti-hyperalgesic effect by cGMP activation and KATP opening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work addresses the development and characterization of porous chitosan-alginate based polyelectrolyte complexes, obtained by using two different proportions of the biocompatible surfactant Pluronic F68. These biomaterials are proposed for applications as biodegradable and biocompatible wound dressing and/or scaffolds. The results indicate that thickness, roughness, porosity and liquid uptake of the membranes increase with the amount of surfactant used, while their mechanical properties and stability in aqueous media decrease. Other important properties such as color and surface hydrophilicity (water contact angle) are not significantly altered or did not present a clear tendency of variation with the increase of the amount of surfactant added to the polyelectrolyte complexes, such as real density, average pore diameter, total pore volume and surface area. The prepared biomaterials were not cytotoxic to L929 cells. In conclusion, it is possible to tune the physicochemical properties of chitosan-alginate polyelectrolyte complexes, through the variation of the proportion of surfactant (Pluronic F68) added to the mixture, so as to enable the desired application of these biomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Δ262-1258)-(T162A), Isogranulatimide for hNek6(S206A), andGSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors.