925 resultados para Bioactive Peptides
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The flowers of Cassia spectabilis yielded three new piperidine alkaloids, (-)-3-O-acetylspectaline (1), (-)-7-hydroxyspectaline (2), and iso-6-spectaline (3), together with the known (-)-spectaline (4). The green fruits of this plant were also investigated, resulting in the isolation of 1 and 4. Their structures were elucidated using a combination of multidimensional NMR and MS techniques, and relative stereochemistries were established by NOESY correlations and analysis of coupling constants. The DNA-damaging activity of these compounds was evaluated using a mutant yeast, Saccharomyces cerevisiae, assay.
Resumo:
The bioassay directed fractionation of the EtOH extract from leaves of Cryptocarya ashersoniana seedlings led to the isolation of two flavonol glucosides: iso-quercitrin and hyperin, which exhibited free radical scavenging activity towards DPPH (IC50 34.4 muM and 32.7 muM, respectively) and were compared to standard compounds rutin (IC50 27.0 muM) and catechin (IC50 41.4 muM). Investigation of extracts from the seedlings roots and stems afforded one antifungal styrylpyrone: goniothalamine, and two dihydropyrones: 6-propyl-5,6-dihydro-2-pyrone and the new 6-[(4'-ethyl-9'-oxabicyclo[3.3.1]non-6'-en-3'-yl)methyl]-5,6-dihydro-2H-pyran-2-one, which had its structure determined by detailed analysis of MS and NMR data, including 2D experiments.
Resumo:
Objective: the aim of this in vivo study was to evaluate the response of the pulp-dentin complex following application of resin-modified glass-ionomer cement, calcium hydroxide hard-setting cement and EDTA-soluble preparation of dentine matrix proteins (ESDP) in deep cavities prepared in non-human primate teeth. Methods: Eighteen deep Class V buccal cavities were prepared in premolars of four capuccin monkeys. In Groups 1 and 2, the cavity floor was lined with ESDP or a resin-modified glass-ionomer cement (Vitrebond - 3M ESPE), respectively. In Group 3 (control), the cavity was lined with a hard setting calcium hydroxide cement (Dycal - Dentsply). The cavities were subsequently filled with amalgam. After 6 months, the animals were sacrificed and the teeth were prepared for microscopic assessment. Six-micron thick serial sections were stained with H/E, Masson's trichrome and Brown & Brenn techniques. Results: No inflammatory pulpal response was observed for all experimental and control Groups. However, the amount of reactionary dentin deposition differed between groups in the rank order ESDP (Group 1) > calcium hydroxide (Group 3) > resin-modified glass-ionomer (Group 2). These differences were statistically significant. Conclusions: All materials were biocompatible when applied in deep cavities. ESDP stimulated higher deposition of reactionary dentin matrix than Vitrebond and Dycal.
Resumo:
In this paper a piezoelectric composite membranes were developed for charge generator to promoter bone regeneration on defects sites. Is known that the osteogenesis process is induced by interactions between biological mechanisms and electrical phenomena. The membranes were prepared by mixing Barium Titanate (BT) powders and PVDF-TrFE (PVDF:TrFE = 60:40 mol%) on dimethylformamide medium. This precursor solution was dried and crystallized at 100degreesC for 12 hours. Composites membranes were obtained by following methods: solvent casting (SC), spincoating (SP), solvent extraction by water addition (WS) and hot pressing (HP).The microstructural analysis performed by SEM showed connectivity type 3-0 and 3-1 with high homogeneity for samples of ceramic volume fraction major than 0.50. Powder agglomerates within the polymer matrix was evidenced were observed for composites with the BT volume fraction major than 40%. The composite of ceramic fraction of 0.55 presented the best values of remanent polarization (similar to33 muC/cm(2)), but the flexibility of these composites with the larger ceramic fraction was significantly affected.For in vivo evaluation PVDF-TrFE/BT 90/10 membranes with 3cm larger were longitudinally implanted under tibiae of male rabbit. After 21 days the animals were sacrificed. By histological analyses were observed neo formed bone with a high mitotic activity. In the interface bone-membrane was evidenced a pronounced callus formation. These results encourage further applications of these membranes in bone-repair process.
Resumo:
Antimicrobial peptides (AMPs) are effector molecules of innate immune systems found in different groups of organisms, including microorganisms, plants, insects, amphibians and humans. These peptides exhibit several structural motifs but the most abundant AMPs assume an amphipathic alpha-helical structure. The alpha-helix forming antimicrobial peptides are excellent candidates for protein engineering leading to an optimization of their biological activity and target specificity. Nowadays several approaches are available and this review deals with the use of combinatorial synthesis and directed evolution in order to provide a high-throughput source of antimicrobial peptides analogues with enhanced lytic activity and specificity.