862 resultados para BRAIN GYRI
Resumo:
Disease-, age-, and gender-associated changes in brain copper, iron, and zinc were assessed in postmortem neocortical tissue (Brodmann area 7) from patients with moderate Alzheimer's disease (AD) (n = 14), severe AD (n = 28), dementia with Lewy bodies (n = 15), and normal age-matched control subjects (n = 26). Copper was lower (20%; p < 0.001) and iron higher (10–16%; p < 0.001) in severe AD compared with controls. Intriguingly significant Group*Age interactions were observed for both copper and iron, suggesting gradual age-associated decline of these metals in healthy non-cognitively impaired individuals. Zinc was unaffected in any disease pathologies and no age-associated changes were apparent. Age-associated changes in brain elements warrant further investigation.
Resumo:
Alzheimer’s disease (AD) is associated with significant disturbances in the homeostasis of Na+ and K+ ions as well as reduced levels of Na+/K+ ATPase in the brain. This study used ICP-MS to accurately quantify Na+ and K+ concentrations in human postmortem brain tissue. We analyzed parietal cortex (Brodmann area 7) from 28 cognitively normal age-matched controls, 15 cases of moderate AD, 30 severe AD, and 15 dementia with Lewy bodies (DLB). Associations were investigated between [Na+] and [K+] and a number of variables including diagnosis, age, gender, Braak tangle stage, amyloid-β (Aβ) plaque load, tau load, frontal tissue pH, and APOE genotype. Brains from patients with severe AD had significantly higher (26%; p<0.001) [Na+] (mean 65.43 ± standard error 2.91 mmol/kg) than controls, but the concentration was not significantly altered in moderate AD or DLB. [Na+] correlated positively with Braak stage (r=0.45; p<0.0001), indicating association with disease severity. [K+] in tissue was 10% lower (p<0.05) in moderate AD than controls. However, [K+] in severe AD and DLB (40.97±1.31 mmol/kg) was not significantly different from controls. There was a significant positive correlation between [K+] and Aβ plaque load (r=0.46; p=0.035), and frontal tissue pH (r=0.35; p=0.008). [Na+] was not associated with [K+] across the groups, and neither ion was associated with tau load or APOE genotype. We have demonstrated disturbances of both [Na+] and [K+] in relation to the severity of AD and markers of AD pathology, although it is possible that these relate to late-stage secondary manifestations of the disease pathology.
Resumo:
Purpose: Persistence of urinary incontinence post acquired brain injury (ABI) carries important prognostic significance. We undertook to document the incidence of urinary incontinence, its management and complications in rehabilitation inpatients following ABI and to assess adherence to post ABI bladder management guidelines.
Method: A retrospective chart survey of a convenience sample of consecutive admissions to two adult neurorehabilitation units Forster Green Hospital, Belfast, and the Scottish Brain Injury Rehabilitation Service, Edinburgh (SBIRSE). Bladder continence and management on transfer to and discharge from rehabilitation, trial removal of catheter, use of bladder drill, ultrasound investigation, anticholinergic medication and complications were recorded.
Results: One hundred and forty six patients were identified. Seventy-seven (52.7%) were independent and continent of urine at rehabilitation admission and 109 (74.7%) on discharge. In all, 13 patients had urinary tract infection, 7 had urethral stricture and 1 developed haematuria whilst catheterised. Ultrasound of renal tracts was underused. Trial removal of catheter after transfer to rehabilitation occurred at a median of 10 days.
Conclusions: Urinary continence was achieved in almost half of incontinent ABI patients during rehabilitation. There is potential for increased use of investigation of the renal tracts. Rehabilitation physicians should consider urethral stricture in the management of continence post ABI.
Implications for Rehabilitation:
- Persisting urinary incontinence post ABI is associated with increased morbidity.
- Urethral stricture is an under-recognised complication after ABI and should be considered as a potential cause of incontinence in this patient group.
- Gains in urinary continence are seen in patients post ABI, managed with various interventions.
- Goal setting offers an opportunity to focus on bladder management rather than simply continence and may allow improvement in rate of appropriate investigation
Resumo:
Stroke patients with hyperglycemia (HG) develop higher volumes of brain edema emerging from disruption of blood-brain barrier (BBB). This study explored whether inductions of protein kinase C-β (PKC-β) and RhoA/Rho-kinase/myosin-regulatory light chain-2 (MLC2) pathway may account for HG-induced barrier damage using an in vitro model of human BBB comprising human brain microvascular endothelial cells (HBMEC) and astrocytes. Hyperglycemia (25 mmol/L D-glucose) markedly increased RhoA/Rho-kinase protein expressions (in-cell westerns), MLC2 phosphorylation (immunoblotting), and PKC-β (PepTag assay) and RhoA (Rhotekin-binding assay) activities in HBMEC while concurrently reducing the expression of tight junction protein occludin. Hyperglycemia-evoked in vitro barrier dysfunction, confirmed by decreases in transendothelial electrical resistance and concomitant increases in paracellular flux of Evan's blue-labeled albumin, was accompanied by malformations of actin cytoskeleton and tight junctions. Suppression of RhoA and Rho-kinase activities by anti-RhoA immunoglobulin G (IgG) electroporation and Y-27632, respectively prevented morphologic changes and restored plasma membrane localization of occludin. Normalization of glucose levels and silencing PKC-β activity neutralized the effects of HG on occludin and RhoA/Rho-kinase/MLC2 expression, localization, and activity and consequently improved in vitro barrier integrity and function. These results suggest that HG-induced exacerbation of the BBB breakdown after an ischemic stroke is mediated in large part by activation of PKC-β.
Resumo:
Using fMRI, we conducted two types of property generation task that involved language switching, with early bilingual speakers of Korean and Chinese. The first is a more conventional task in which a single language (L1 or L2) was used within each trial, but switched randomly from trial to trial. The other consists of a novel experimental design where language switching happens within each trial, alternating in the direction of the L1/L2 translation required. Our findings support a recently introduced cognitive model, the 'hodological' view of language switching proposed by Moritz-Gasser and Duffau. The nodes of a distributed neural network that this model proposes are consistent with the informative regions that we extracted in this study, using both GLM methods and Multivariate Pattern Analyses: the supplementary motor area, caudate, supramarginal gyrus and fusiform gyrus and other cortical areas.
Resumo:
Story understanding involves many perceptual and cognitive subprocesses, from perceiving individual words, to parsing sentences, to understanding the relationships among the story characters. We present an integrated computational model of reading that incorporates these and additional subprocesses, simultaneously discovering their fMRI signatures. Our model predicts the fMRI activity associated with reading arbitrary text passages, well enough to distinguish which of two story segments is being read with 74% accuracy. This approach is the first to simultaneously track diverse reading subprocesses during complex story processing and predict the detailed neural representation of diverse story features, ranging from visual word properties to the mention of different story characters and different actions they perform. We construct brain representation maps that replicate many results from a wide range of classical studies that focus each on one aspect of language processing and offer new insights on which type of information is processed by different areas involved in language processing. Additionally, this approach is promising for studying individual differences: it can be used to create single subject maps that may potentially be used to measure reading comprehension and diagnose reading disorders.
Resumo:
Vector space models (VSMs) represent word meanings as points in a high dimensional space. VSMs are typically created using a large text corpora, and so represent word semantics as observed in text. We present a new algorithm (JNNSE) that can incorporate a measure of semantics not previously used to create VSMs: brain activation data recorded while people read words. The resulting model takes advantage of the complementary strengths and weaknesses of corpus and brain activation data to give a more complete representation of semantics. Evaluations show that the model 1) matches a behavioral measure of semantics more closely, 2) can be used to predict corpus data for unseen words and 3) has predictive power that generalizes across brain imaging technologies and across subjects. We believe that the model is thus a more faithful representation of mental vocabularies.
Resumo:
We present the results of exploratory experiments using lexical valence extracted from brain using electroencephalography (EEG) for sentiment analysis. We selected 78 English words (36 for training and 42 for testing), presented as stimuli to 3 English native speakers. EEG signals were recorded from the subjects while they performed a mental imaging task for each word stimulus. Wavelet decomposition was employed to extract EEG features from the time-frequency domain. The extracted features were used as inputs to a sparse multinomial logistic regression (SMLR) classifier for valence classification, after univariate ANOVA feature selection. After mapping EEG signals to sentiment valences, we exploited the lexical polarity extracted from brain data for the prediction of the valence of 12 sentences taken from the SemEval-2007 shared task, and compared it against existing lexical resources.
Resumo:
Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients.