992 resultados para BLANK FIELD SOURCES
Resumo:
Matrix spalling or crushing is one of the important mechanisms of fiber-matrix interaction of fiber reinforced cementitious composites (FRCC). The fiber pullout mechanisms have been extensively studied for an aligned fiber but matrix failure is rarely investigated since it is thought not to be a major affect. However, for an inclined fiber, the matrix failure should not be neglected. Due to the complex process of matrix spalling, experimental investigation and analytical study of this mechanism are rarely found in literature. In this paper, it is assumed that the load transfer is concentrated within the short length of the inclined fiber from the exit point towards anchored end and follows the exponential law. The Mindlin formulation is employed to calculate the 3D stress field. The simulation gives much information about this field. The 3D approximation of the stress state around an inclined fiber helps to qualitatively understand the mechanism of matrix failure. Finally, a spalling criterion is proposed by which matrix spalling occurs only when the stress in a certain volume, rather than the stress at a small point, exceeds the material strength. This implies some local stress redistribution after first yield. The stress redistribution results in more energy input and higher load bearing capacity of the matrix. In accordance with this hypothesis, the evolution of matrix spalling is demonstrated. The accurate prediction of matrix spalling needs the careful determination of the parameters in this model. This is the work of further study. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Measurements of mean and fluctuating velocity and temperature and their self- and cross-products to the third-order are presented for a heated axisymmetric air jet. Froude numbers in the range of 3500 13,190, Reynolds numbers in the range of 3470-8500 and non-dimensional streamwise distances. X*, from 0.27 to 1.98 are covered by the data. It was found that turbulence intensity decreases for the heated jet in the region between the inertia dominated and the buoyancy dominated regions which is contrary to findings with helium jets mixing with ambient air to produce density fluctuations. The effects of heating on the turbulent kinetic energy budget and the temperature variance budget show small differences for the inertia dominated region and the intermediate region which help to explain the transition process to the far field plume region. Constants are evaluated for the isotropic eddy diffusivity and generalised gradient hypothesis models as well as the scalar variance model. No significant effect of heating on the dissipation time-scale ratio was found. A novel wire array with an inclined cold wire was used. Measurements obtained with this probe are found to lead to asymmetries in some of the higher-order products. Further investigation suggested that the asymmetries are attributable to an as yet unreported interference effect produced by the leading prong of the inclined temperature wire, The effect may also have implications for inclined velocity wires which contain a temperature component when used in heated flows. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
A discrete protocol for teleportation of superpositions of coherent states of optical-cavity fields is presented. Displacement and parity operators are unconventionally used in Bell-like measurement for field states.
Resumo:
The fungi Sclerotinia minor and S. sclerotiorum are the causal agents of two similar diseases of peanut (Arachis hypogaea L.). Both diseases cause significant losses in the Australian peanut industry. Development of cultivars with resistance to Sclerotinia will be an important component of integrated control. The aims of this project are to generate information that will assist in breeding for Sclerotinia resistance in peanut: to identify Sclerotinia-resistant peanut germplasm, to understand the inheritance and estimate heritability of resistance, and to test the effectiveness of identified sources of resistance against both S. minor and S. sclerotiorum. This study has clearly established that material that shows resistance to S. minor in the USA is resistant to S. minor and likely to be resistant to S. sclerotiorum in Australia. The high level of resistance to both S. minor and S. sclerotiorum in germplasm from Texas, particularly TxAG-4, was confirmed. VA 93B showed good resistance in the field, which is primarily due to the open bush type rather than physiological resistance. Physiological resistance to S. minor was also identified in a cultivar and a landrace from Indonesia and a rust-resistant line from Queensland. All germplasm found to have high physiological resistance to S. minor belonged to the Spanish type. Inheritance of physiological resistance to S. minor was studied using a Generation Means Analysis (GMA) of the cross TxAG-4/VA 93B and its reciprocal. The broad-sense heritability of physiological resistance on a single plant basis was estimated at 47%, much higher than earlier estimates obtained in field studies. The average gene action of Sclerotinia resistance genes from TxAG-4 was found to be additive. No dominance effects were detected in the GMA. A small but significant reciprocal effect between TxAG-4 and VA 93B indicated that VA 93B passed on some physiological resistance maternally. An experiment was conducted to confirm the value of resistance against both S. minor and S. sclerotiorum. TxAG-4 was found to have physiological resistance to both S. minor and S. sclerotiorum. This resistance was expressed against both Sclerotinia species by progeny that were selected for resistance to S. minor. On the basis of the information obtained, the comparative advantages of 3 strategies for Sclerotinia-resistant cultivar development are discussed: (1) introduction of germplasm; (2) recurrent backcrossing with screening and crossing in the BCnF1 generation; and (3) pedigree selection. At present, introduction and backcrossing are recommended as the preferred strategies.
Resumo:
In recent years, studies on environmental samples with unusual dibenzo-p-dioxin (PCDD) congener profiles were reported from a range of countries. These profiles, characterized by a dominance of octachlorinated dibenzodioxin (OCDD) and relatively low in dibenzofuran (PCDF) concentrations, could not be attributed to known sources or formation processes. In the present study, the processes that result in these unusual profiles were assessed using the concentrations and isomer signatures of PCDDs from dated estuarine sediment cores in Queensland, Australia. Increases in relative concentrations of lower chlorinated PODS and a relative decrease of OCDD were correlated with time of sediment deposition. Preferred lateral, anaerobic dechlorination of OCDD represents a likely pathway for these changes. In Queensland sediments, these transformations result in a distinct dominance of isomers fully chlorinated in the 1,4,6,9-positions (1,4-patterns), and similar 1,4-patterns were observed in sediments from elsewhere. Consequently, these environmental samples may not reflect the signatures of the original source, and a reevaluation of source inputs was undertaken. Natural formation of PCDDs, which has previously been suggested, is discussed; however, based on the present results and literature comparisons, we propose an alternative scenario. This scenario hypothesizes that an anthropogenic PCDD precursor input (e.g. pentachlorophenol) results in the contamination. These results and hypothesis imply further investigations are warrented into possible anthropogenic sources in areas where natural PCDD formation has been suggested.
Resumo:
Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1-2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales.
Resumo:
Contaminant transport in coastal aquifers is of increasing interest since, with the development of coastal areas, contaminants from surface sources may enter coastal aquifers and pollute the groundwater flow. Coastal groundwater flow is complicated because of the presence of a freshwater-saltwater diffusion zone and the tidal variation of sea level at the seaward end. This paper investigates experimentally the behaviour of contaminant plumes with different densities in an unconfined coastal aquifer. Experiments were performed in a flow tank filled with glass beads as the porous medium. Results show that the dense contaminant has a more diffusive front than the less dense one in the seaward direction towards the coastline. The plume becomes more diffusive when it travels closer to the saltwater interface. On the contrary, the less dense contaminant presents a relatively sharp outline. It tends to migrate in the upper portion of the aquifer and exits in a concentrated manner over a small discharge area at the coastline, not further seaward under the sea. Non-dimensional parameters show that instabilities occur in our experiments for a density difference of 1.2% or larger between the contaminant and the ambient water. The experimental results provide guidance for field monitoring and numerical modelling. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The grazing trial at Kidston Gold Mine, North Queensland, was aimed specifically to assess the uptake of metals from the tailing and the potential for unacceptable contamination of saleable meat. Further aims included estimating metal dose rates and identifying potential exposure pathways including plant uptake of heavy metals, mine tailings adhered to plants and direct ingestion of mine tailing. It was found that of the 11 metals analysed (As, Zn, Co, Cd, Cr, Sn, Pb, Sb, Hg, Se and Ni) in the animal's liver, muscle and blood during the 8-month trial period, only accumulation of arsenic and zinc occurred. A risk assessment including these two metals was conducted to determine the potential for chronic metal toxicity and long-term contamination, using the estimates of metal dose rate. It was concluded that no toxicity or long-term contamination in cattle was likely at this site. Management procedures were therefore not required at this site; however, the results highlight percent ground cover and standing dry matter (DM) as important factors in decreasing metal exposure from direct ingestion of tailings and dust adhered to plants. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The emphasis of this work is on the optimal design of MRI magnets with both superconducting coils and ferromagnetic rings. The work is directed to the automated design of MRI magnet systems containing superconducting wire and both `cold' and `warm' iron. Details of the optimization procedure are given and the results show combined superconducting and iron material MRI magnets with excellent field characteristics. Strong, homogeneous central magnetic fields are produced with little stray or external field leakage. The field calculations are performed using a semi-analytical method for both current coil and iron material sources. Design examples for symmetric, open and asymmetric clinical MRI magnets containing both superconducting coils and ferromagnetic material are presented.
Resumo:
Magnetic resonance imaging (MRI) magnets have very stringent constraints on the homogeneity of the static magnetic field that they generate over desired imaging regions. The magnet system also preferably generates very little stray field external to its structure, so that ease of siting and safety are assured. This work concentrates on deriving, means of rapidly computing the effect of 'cold' and 'warm' ferromagnetic material in or around the superconducting magnet system, so as to facilitate the automated design of hybrid material MR magnets. A complete scheme for the direct calculation of the spherical harmonics of the magnetic field generated by a circular ring of ferromagnetic material is derived under the conditions of arbitrary external magnetizing fields. The magnetic field produced by the superconducting coils in the system is computed using previously developed methods. The final, hybrid algorithm is fast enough for use in large-scale optimization methods. The resultant fields from a practical example of a 4 T, clinical MRI magnet containing both superconducting coils and magnetic material are presented.
Resumo:
There is very little human disease associated with enterohaemorrhagic Escherichia coli O157 in Australia even though these organisms are present in the animal population. A group of Australian isolates of E. coli O157:H7 and O157:H- from human and animal sources were tested for the presence of virulence markers and compared by XbaI DNA macrorestriction analysis using pulsed-field gel electrophoresis (PFGE). Each of 102 isolates tested contained the gene eae which encodes the E. coli attaching and effacing factor and all but one carried the enterohaemolysin gene, ehxA, found on the EHEC plasmid. The most common Shiga toxin gene carried was stx(2c), either alone (16%) or in combination with stx(1) (74%) or stx(2) (3%) PFGE grouped the isolates based on H serotype and some clusters were source specific. Australian E. coli O157:H7 and H- isolates from human, animal and meat sources carry all the virulence markers associated with EHEC disease in humans therefore other factors must be responsible for the low rates of human infection in Australia.