970 resultados para Arc adjacency operator
Resumo:
Vekua operators map harmonic functions defined on domain in \mathbb R2R2 to solutions of elliptic partial differential equations on the same domain and vice versa. In this paper, following the original work of I. Vekua (Ilja Vekua (1907–1977), Soviet-Georgian mathematician), we define Vekua operators in the case of the Helmholtz equation in a completely explicit fashion, in any space dimension N ≥ 2. We prove (i) that they actually transform harmonic functions and Helmholtz solutions into each other; (ii) that they are inverse to each other; and (iii) that they are continuous in any Sobolev norm in star-shaped Lipschitz domains. Finally, we define and compute the generalized harmonic polynomials as the Vekua transforms of harmonic polynomials. These results are instrumental in proving approximation estimates for solutions of the Helmholtz equation in spaces of circular, spherical, and plane waves.
Resumo:
We embark upon a systematic investigation of operator space structure of JC*-triples via a study of the TROs (ternary rings of operators) they generate. Our approach is to introduce and develop a variety of universal objects, including universal TROs, by which means we are able to describe all possible operator space structures of a JC*-triple. Via the concept of reversibility we obtain characterisations of universal TROs over a wide range of examples. We apply our results to obtain explicit descriptions of operator space structures of Cartan factors regardless of dimension
Resumo:
Operator spaces of Hilbertian JC∗ -triples E are considered in the light of the universal ternary ring of operators (TRO) introduced in recent work. For these operator spaces, it is shown that their triple envelope (in the sense of Hamana) is the TRO they generate, that a complete isometry between any two of them is always the restriction of a TRO isomorphism and that distinct operator space structures on a fixed E are never completely isometric. In the infinite-dimensional cases, operator space structure is shown to be characterized by severe and definite restrictions upon finite-dimensional subspaces. Injective envelopes are explicitly computed.
Resumo:
Abstract. We prove that the vast majority of JC∗-triples satisfy the condition of universal reversibility. Our characterisation is that a JC∗-triple is universally reversible if and only if it has no triple homomorphisms onto Hilbert spaces of dimension greater than two nor onto spin factors of dimension greater than four. We establish corresponding characterisations in the cases of JW∗-triples and of TROs (regarded as JC∗-triples). We show that the distinct natural operator space structures on a universally reversible JC∗-triple E are in bijective correspondence with a distinguished class of ideals in its universal TRO, identify the Shilov boundaries of these operator spaces and prove that E has a unique natural operator space structure precisely when E contains no ideal isometric to a nonabelian TRO. We deduce some decomposition and completely contractive properties of triple homomorphisms on TROs.
Resumo:
In this paper we study Dirichlet convolution with a given arithmetical function f as a linear mapping 'f that sends a sequence (an) to (bn) where bn = Pdjn f(d)an=d.
We investigate when this is a bounded operator on l2 and ¯nd the operator norm. Of particular interest is the case f(n) = n¡® for its connection to the Riemann zeta
function on the line 1, 'f is bounded with k'f k = ³(®). For the unbounded case, we show that 'f : M2 ! M2 where M2 is the subset of l2 of multiplicative sequences, for many f 2 M2. Consequently, we study the `quasi'-norm sup kak = T a 2M2 k'fak kak
for large T, which measures the `size' of 'f on M2. For the f(n) = n¡® case, we show this quasi-norm has a striking resemblance to the conjectured maximal order of
j³(® + iT )j for ® > 12 .
Resumo:
In this paper a generalization of collectively compact operator theory in Banach spaces is developed. A feature of the new theory is that the operators involved are no longer required to be compact in the norm topology. Instead it is required that the image of a bounded set under the operator family is sequentially compact in a weaker topology. As an application, the theory developed is used to establish solvability results for a class of systems of second kind integral equations on unbounded domains, this class including in particular systems of Wiener-Hopf integral equations with L1 convolutions kernels
Resumo:
We present a detailed case study of the characteristics of auroral forms that constitute the first ionospheric signatures of substorm expansion phase onset. Analysis of the optical frequency and along-arc (azimuthal) wave number spectra provides the strongest constraint to date on the potential mechanisms and instabilities in the near-Earth magnetosphere that accompany auroral onset and which precede poleward arc expansion and auroral breakup. We evaluate the frequency and growth rates of the auroral forms as a function of azimuthal wave number to determine whether these wave characteristics are consistent with current models of the substorm onset mechanism. We find that the frequency, spatial scales, and growth rates of the auroral forms are most consistent with the cross-field current instability or a ballooning instability, most likely triggered close to the inner edge of the ion plasma sheet. This result is supportive of a near-Earth plasma sheet initiation of the substorm expansion phase. We also present evidence that the frequency and phase characteristics of the auroral undulations may be generated via resonant processes operating along the geomagnetic field. Our observations provide the most powerful constraint to date on the ionospheric manifestation of the physical processes operating during the first few minutes around auroral substorm onset.
First order k-th moment finite element analysis of nonlinear operator equations with stochastic data
Resumo:
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.
Resumo:
In this paper we study convergence of the L2-projection onto the space of polynomials up to degree p on a simplex in Rd, d >= 2. Optimal error estimates are established in the case of Sobolev regularity and illustrated on several numerical examples. The proof is based on the collapsed coordinate transform and the expansion into various polynomial bases involving Jacobi polynomials and their antiderivatives. The results of the present paper generalize corresponding estimates for cubes in Rd from [P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), no. 6, 2133-2163].
Resumo:
Consider the massless Dirac operator on a 3-torus equipped with Euclidean metric and standard spin structure. It is known that the eigenvalues can be calculated explicitly: the spectrum is symmetric about zero and zero itself is a double eigenvalue. The aim of the paper is to develop a perturbation theory for the eigenvalue with smallest modulus with respect to perturbations of the metric. Here the application of perturbation techniques is hindered by the fact that eigenvalues of the massless Dirac operator have even multiplicity, which is a consequence of this operator commuting with the antilinear operator of charge conjugation (a peculiar feature of dimension 3). We derive an asymptotic formula for the eigenvalue with smallest modulus for arbitrary perturbations of the metric and present two particular families of Riemannian metrics for which the eigenvalue with smallest modulus can be evaluated explicitly. We also establish a relation between our asymptotic formula and the eta invariant.
Resumo:
We study the spectrum of a one-dimensional Dirac operator pencil, with a coupling constant in front of the potential considered as the spectral parameter. Motivated by recent investigations of graphene waveguides, we focus on the values of the coupling constant for which the kernel of the Dirac operator contains a square integrable function. In physics literature such a function is called a confined zero mode. Several results on the asymptotic distribution of coupling constants giving rise to zero modes are obtained. In particular, we show that this distribution depends in a subtle way on the sign variation and the presence of gaps in the potential. Surprisingly, it also depends on the arithmetic properties of certain quantities determined by the potential. We further observe that variable sign potentials may produce complex eigenvalues of the operator pencil. Some examples and numerical calculations illustrating these phenomena are presented.
Resumo:
A new form of carbon is described, which consists of hollow, three-dimensional shells bounded by bilayer graphene. The new carbon is produced very simply, by passing a current through graphite rods in a commercial arc-evaporation unit. Characterisation of the carbon using high resolution transmission electron microscopy is described, and the possible formation mechanism discussed.
Resumo:
We present the first multi-event study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near-Earth plasma instability which causes the substorm onset arc. Using data from ground-based auroral imagers, we study repeatable signatures of along-arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near-Earth plasma sheet. We show that the growth and spatial scales of these wave-like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wavenumber with the most unstable spatial scales mapping to an azimuthal wavelength λ≈1700 − 2500 km in the equatorial magnetosphere at around 9-12 RE. We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the cross-field current instability and the shear-flow ballooning instability. We conclude that, although the cross-field current instability can generate similar magnitude of growth rates, the range of unstable wavenumbers indicates that the shear-flow ballooning instability is the most likely explanation for our observations.
Resumo:
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite Sturm–Liouville operator A = sign(x)(−Δ+V(x)) accumulate to zero asymptotically along specific curves in the complex plane. Additionally, we relate the asymptotics of complex eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators.