705 resultados para Alloy e alloy analyzer
Resumo:
Fatigue crack growth behaviour in a 15 wt% SiC particulate reinforced 6061 aluminium alloy has been examined using pre-cracked specimens. Crack initiation and early growth of fatigue cracks in smooth specimens has also been investigated using the technique of periodic replication. The composite contained a bimodal distribution of SiC particle sizes, and detailed attention was paid to interactions between the SiC particles and the growing fatigue-crack tip. At low stress intensity levels, the proportion of coarse SiC particles on the fatigue surfaces was much smaller than that on the metallographic sections, indicating that the fatigue crack tends to run through the matrix avoiding SiC particles. As the stress intensity level increases, the SiC particles ahead of the growing fatigue crack tip are fractured and the fatigue crack then links the fractured particles. The contribution of this monotonic fracture mode resulted in a higher growth rate for the composite than for the unreinforced alloy. An increase in the proportion of cracked, coarse SiC particles on the fatigue surface was observed for specimens tested at a higher stress ratio.
Resumo:
Fibre Bragg Grating (FBG) array sensors have been successfully embedded in aluminium alloy matrix by ultrasonic consolidation (UC) technique. The temperature and loading responses of the embedded FBG arrays have been systematically characterised. The embedded grating sensors exhibit an average temperature sensitivity of ~36pm/°C, which is three times higher than that of normal FBGs, and a loading responsivity of ~0.1nm/kg within the dynamic range from 0kg to 3kg. This initial experiment clearly demonstrates that FBG array sensors can be embedded in metal matrix together with other passive and active fibres to fabricate smart materials to monitor the operation and health of engineering structures.
Resumo:
O objetivo deste estudo foi comparar a fusibilidade de ligas de Co-Cr-Mo-W (Remanium 2000), Ni-Cr (Durabond) e Co-Cr-Mo (Vera-PDI), incluídas em revestimentos à base de fosfato, sílica ou utilizando uma técnica mista. Uma rede de nylon quadrada (10 X 10 mm) com 100 espaços abertos serviu de modelo para construção de padrões de cera, que foram incluídos com revestimento à base de sílica, revestimento fosfatado e técnica mista (camada de revestimento fosfatado com 2 mm de espessura + revestimento à base de sílica). Quarenta e cinco espécimes (5 para cada condição experimental) foram fundidos sob chama de gás-oxigênio e a seguir jateados com óxido de alumínio. O número de segmentos fundidos completos foi contado para obter uma percentagem designada como "valor de fusibilidade", representando a precisão da liga em reproduzir os detalhes do molde. A análise estatística por meio de ANOVA a dois critérios e teste Tukey mostrou que, comparando-se as ligas, a Remanium 2000 teve fusibilidade estaticamente semelhante (p>0,05) à da Vera PDI e inferior à da liga Durabond (p<0,05). Considerando os resultados da técnica mista, a liga Remanium 2000 teve menor valor de fusibilidade (p<0,05) que as ligas Durabond e Vera PDI, que apresentaram valores estatisticamente semelhantes entre si (p>0,05). Concluindo, a fusibilidade da liga de Co-Cr-Mo-W (Remanium 2000) foi comparável à da liga de Co-Cr (Vera PDI) e inferior à da liga de Ni-Cr alloy (Durabond). À exceção da liga Remanium 2000, a técnica de inclusão mista aumentou consideravelmente a capacidade das ligas testadas de reproduzir os detalhes do molde, quando comparada à técnica de inclusão em revestimento fosfatado. A técnica de inclusão mista representa uma alternativa para melhorar a fusibilidade de ligas de metais básicos sem afetar a qualidade superficial das peças metálicas.
Resumo:
O objetivo deste estudo foi comparar a fusibilidade de ligas de Co-Cr-Mo-W (Remanium 2000), Ni-Cr (Durabond) e Co-Cr-Mo (Vera-PDI), incluídas em revestimentos à base de fosfato, sílica ou utilizando uma técnica mista. Uma rede de nylon quadrada (10 X 10 mm) com 100 espaços abertos serviu de modelo para construção de padrões de cera, que foram incluídos com revestimento à base de sílica, revestimento fosfatado e técnica mista (camada de revestimento fosfatado com 2 mm de espessura + revestimento à base de sílica). Quarenta e cinco espécimes (5 para cada condição experimental) foram fundidos sob chama de gás-oxigênio e a seguir jateados com óxido de alumínio. O número de segmentos fundidos completos foi contado para obter uma percentagem designada como "valor de fusibilidade", representando a precisão da liga em reproduzir os detalhes do molde. A análise estatística por meio de ANOVA a dois critérios e teste Tukey mostrou que, comparando-se as ligas, a Remanium 2000 teve fusibilidade estaticamente semelhante (p>0,05) à da Vera PDI e inferior à da liga Durabond (p<0,05). Considerando os resultados da técnica mista, a liga Remanium 2000 teve menor valor de fusibilidade (p<0,05) que as ligas Durabond e Vera PDI, que apresentaram valores estatisticamente semelhantes entre si (p>0,05). Concluindo, a fusibilidade da liga de Co-Cr-Mo-W (Remanium 2000) foi comparável à da liga de Co-Cr (Vera PDI) e inferior à da liga de Ni-Cr alloy (Durabond). À exceção da liga Remanium 2000, a técnica de inclusão mista aumentou consideravelmente a capacidade das ligas testadas de reproduzir os detalhes do molde, quando comparada à técnica de inclusão em revestimento fosfatado. A técnica de inclusão mista representa uma alternativa para melhorar a fusibilidade de ligas de metais básicos sem afetar a qualidade superficial das peças metálicas.
Resumo:
A first-principles method is applied to find the intra and intervalley n-type carrier scattering rates for substitutional carbon in silicon. The method builds on a previously developed first-principles approach with the introduction of an interpolation technique to determine the intravalley scattering rates. Intravalley scattering is found to be the dominant alloy scattering process in Si1-xCx, followed by g-type intervalley scattering. Mobility calculations show that alloy scattering due to substitutional C alone cannot account for the experimentally observed degradation of the mobility. We show that the incorporation of additional charged impurity scattering due to electrically active interstitial C complexes models this residual resistivity well.
Resumo:
First-principles electronic structure methods are used to predict the mobility of n-type carrier scattering in strained SiGe. We consider the effects of strain on the electron-phonon deformation potentials and the alloy scattering parameters. We calculate the electron-phonon matrix elements and fit them up to second order in strain. We find, as expected, that the main effect of strain on mobility comes from the breaking of the degeneracy of the six Δ and L valleys, and the choice of transport direction. The non-linear effects on the electron-phonon coupling of the Δ valley due to shear strain are found to reduce the mobility of Si-like SiGe by 50% per % strain. We find increases in mobility between 2 and 11 times that of unstrained SiGe for certain fixed Ge compositions, which should enhance the thermoelectric figure of merit in the same order, and could be important for piezoresistive applications.
Resumo:
The p-type carrier scattering rate due to alloy disorder in Si1-xGex alloys is obtained from first principles. The required alloy scattering matrix elements are calculated from the energy splitting of the valence bands, which arise when one average host atom is replaced by a Ge or Si atom in supercells containing up to 128 atoms. Alloy scattering within the valence bands is found to be characterized by a single scattering parameter. The hole mobility is calculated from the scattering rate using the Boltzmann transport equation in the relaxation time approximation. The results are in good agreement with experiments on bulk, unstrained alloys..
Resumo:
First-principles electronic structure methods are used to find the rates of intravalley and intervalley n-type carrier scattering due to alloy disorder in Si1-xGex alloys. The required alloy scattering matrix elements are calculated from the energy splitting of nearly degenerate Bloch states which arises when one average host atom is replaced by a Ge or Si atom in supercells containing up to 128 atoms. Scattering parameters for all relevant Delta and L intravalley and intervalley alloy scattering are calculated. Atomic relaxation is found to have a substantial effect on the scattering parameters. f-type intervalley scattering between Delta valleys is found to be comparable to other scattering channels. The n-type carrier mobility, calculated from the scattering rate using the Boltzmann transport equation in the relaxation time approximation, is in excellent agreement with experiments on bulk, unstrained alloys.
Resumo:
Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.
Resumo:
We studied the optical properties of a strain-induced direct-band-gap Ge quantum well embedded in InGaAs. We showed that the band offsets depend on the electronegativity of the layer in contact with Ge, leading to different types of optical transitions in the heterostructure. When group-V atoms compose the interfaces, only electrons are confined in Ge, whereas both carriers are confined when the interface consists of group-III atoms. The different carrier confinement results in different emission dynamics behavior. This study provides a solution to obtain efficient light emission from Ge.
Resumo:
Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo) is a dual phase (α + β) alloy in the as-received pressure tube condition. It has been proposed to be the pressure tube candidate material for the Generation-IV CANDU-Supercritical Water Reactor (CANDU-SCWR). In this dissertation, the effects of heavy ion irradiation, deformation and heat treatment on the microstructures of the alloy were investigated to enable us to have a better understanding of the potential in-reactor performance of this alloy. In-situ heavy ion (1 MeV) irradiation was performed to study the nucleation and evolution of dislocation loops in both α- and β-Zr. Small and dense type dislocation loops form under irradiation between 80 and 450 °C. The number density tends to saturate at ~ 0.1 dpa. Compared with the α-Zr, the defect yield is much lower in β-Zr. The stabilities of the metastable phases (β-Zr and ω-Zr) and the thermal-dynamically equilibrium phase, fcc Zr(Mo, Nb)2, under irradiation were also studied at different temperatures. Chemi-STEM elemental mapping was carried out to study the elemental redistribution caused by irradiation. The stability of these phases and the elemental redistribution are strongly dependent on irradiation temperature. In-situ time-of-flight neutron diffraction tensile and compressive tests were carried out at different temperatures to monitor lattice strain evolutions of individual grain families during these tests. The β-Zr is the strengthening phase in this alloy in the as-received plate material. Load is transferred to the β-Zr after yielding of the α-Zr grains. The temperature dependence of static strain aging and the yielding sequence of the individual grain families were discussed. Strong tensile/compressive asymmetry was observed in the {0002} grain family at room temperature. The microstructures of the sample deformed at 400 °C and the samples only subjected to heat treatment at the same temperature were characterized with TEM. Concentration of β phase stabilizers in the β grain and the morphology of β grain have significant effect on the stability of β- and ω-Zr under thermal treatment. Applied stress/strain enhances the decomposition of isothermal ω phase but suppresses α precipitation inside the β grains at high temperature. An α → ω/ZrO phase transformation was observed in the thin foils of Zr-Excel alloy and pure Zr during in-situ heating at 700 °C in TEM.
Resumo:
The aim of this work was to perform a detailed investigation of the use of Selective Laser Melting (SLM) technology to process eutectic silver-copper alloy Ag 28 wt. % Cu (also called AgCu28). The processing occurred with a Realizer SLM 50 desktop machine. The powder analysis (SEM-topography, EDX, particle distribution) was reported as well as the absorption rates for the near-infrared (NIR) spectrum. Microscope imaging showed the surface topography of the manufactured parts. Furthermore, microsections were conducted for the analysis of porosity. The Design of Experiments approach used the response surface method in order to model the statistical relationship between laser power, spot distance and pulse time.