943 resultados para 070101 Agricultural Land Management
Resumo:
Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.
Resumo:
Stream channel erosion in the deep loess soils region of western Iowa causes severe damage along hundreds of miles of streams in twenty-two counties. The goal of this project was to develop information, systems, and procedures for use in making resource allocation decisions related to the protection of transportation facilities and farmland from damages caused by stream channel erosion. Section one of this report provides an introduction. Section two presents an assessment of stream channel conditions from aerial and field reconnaissance conducted in 1993 and 1994 and a classification of the streams based on a six stage model of stream channel evolution. A Geographic Information System is discussed that has been developed to store and analyze data on the stream conditions and affected infrastructure and assist in the planning of stabilization measures. Section three presents an evaluation of two methods for predicting the extent of channel degradation. Section four presents an estimate of costs associated with damages from stream channel erosion since the time of channelization until 1992. Damage to highway bridges represent the highest costs associated with channel erosion, followed by railroad bridges and right-of-way; loss of agricultural land represents the third highest cost. An estimate of costs associated with future channel erosion on western Iowa streams is also presented in section four. Section four also presents a procedure to estimate the benefits and costs of implementing stream stabilization measures. The final section of this report, section five, presents information on the development of the organizational structure and administrative procedures which are being used to plan, coordinate, and implement stream stabilization projects and programs in western Iowa.
Resumo:
In an earlier research project, HR-204, the magnitude and nature of highway related tort claims against counties in Iowa were investigated. However, virtually all of the claims identified in that research resulted from incidents that occurred in areas with predominantly agricultural land use. With recent increases in the rural non-farm population, many traditionally urban problems are also appearing in built-up areas under county jurisdiction. This trend is expected to continue so that counties must anticipate a change in the nature of the tort claims they will encounter. Problems that heretofore have been unique to cities may become commonplace in areas for which counties are responsible. The research reported here has been directed toward an investigation of those problems in rural subdivisions that lead to claims growing out of the provision of highway services by counties. Lacking a sufficient database among counties for the types of tort claims of interest in this research, a survey was sent to 259 cities in Iowa in order to identify highway related problems leading to those claims. The survey covered claims during a five year period from 1975 to 1980. Over one-third of the claims reported were based on alleged street defects. Another 34 percent of the claims contained allegations of damages due to backup of sanitary sewers or defects in sidewalks. By expanding the sample from the 164 cities that responded to the survey, it was estimated that a total of $49,000,000 in claims had been submitted to all 259 cities. Over 34% of this amount resulted from alleged defects in the use of traffic signs, signals, and markings. Another 42% arose from claims of defects in streets and sidewalks. Payments in settlement of claims were about 13.4% of the amount asked for those claims closed during the period covered by the survey. About $9,000,000 in claims was pending on June 30, 1980 according to the information furnished. Officials from 23 cities were interviewed to provide information on measures to overcome the problems leading to tort claims. On the basis of this information, actions have been proposed that can be undertaken by counties to reduce the potential for highway-related claims resulting from their responsibilities in rural subdivisions and unincorporated communities. Suggested actions include the eight recommendations contained in the final report for the previous research under HR-204. In addition, six recommendations resulted from this research, as follows: 1. Counties should adopt county subdivision ordinances. 2. A reasonable policy concerning sidewalks should be adopted. 3. Counties should establish and implement a system for setting road maintenance priorities. 4. Counties should establish and implement a procedure for controlling construction or maintenance activities within the highway right of way. 5. Counties should establish and implement a system to record complaints that are received relating to highway maintenance and to assure timely correction of defective conditions leading to such complaints. 6. Counties should establish and implement a procedure to ensure timely advice of highway defects for which notice is not otherwise received.
Resumo:
Includes discussion and findings by a key note speaker at Natural Resources Task Force Workshop on trends to do with Iowa's natural resources such as urban and rural development on agricultural land, cultivation, farm ownership, air quality, disposing of solid waste and the recreational needs and the possibility of creating new agencies to deal with natural resources planning and regulation.
Resumo:
Silver Creek is a warm water stream resource located in one of the most intensely cropped portions of Clayton County. The stream has been included on Iowa’s 303(d) list of impaired waters since 2002. Aquatic life, which should be present in Silver Creek, isn’t there. According to the Draft Total Maximum Daily Load (TMDL) for Silver Creek, the primary nonpoint pollution sources are soil erosion from agricultural land uses and direct deposition of ammonia by livestock with access to the stream. The Clayton Soil & Water Conservation District has begun efforts to remove Silver Creek from the impaired waters list. The District has promoted stream corridor and sinkhole protection, and the installation of buffer practices along Silver Creek and its tributaries. Conservation practices have been targeted to crop fields to reduce sediment delivery to the stream. A series of news articles, newsletters, and field days have been utilized to increase public understanding of water quality issues. Landowner interest has outweighed available cost share resources. Additional financial support will allow the project to build upon its early successes, to further address the identified impairments, and to respond to a long list of landowners that are interested in conservation work on their farms.
Resumo:
Silver Creek is a warm water stream resource located in one of the most intensely cropped portions of Clayton County. The stream has been included on Iowa’s 303(d) list of impaired waters since 2002. Aquatic life, which should be present in Silver Creek, isn’t there. According to the Draft Total Maximum Daily Load (TMDL) for Silver Creek, the primary nonpoint pollution sources are soil erosion from agricultural land uses and direct deposition of ammonia by livestock with access to the stream. The Clayton Soil & Water Conservation District has begun efforts to remove Silver Creek from the impaired waters list. The District has promoted stream corridor and sinkhole protection, and the installation of buffer practices along Silver Creek and its tributaries. Conservation practices have been targeted to crop fields to reduce sediment delivery to the stream. A series of news articles, newsletters, and field days have been utilized to increase public understanding of water quality issues. Landowner interest has outweighed available cost share resources. Additional financial support will allow the project to build upon its early successes, to further address the identified impairments, and to respond to a long list of landowners that are interested in conservation work on their farms.
Resumo:
Little River Lake watershed is a 13,305 acre subwatershed of Little River. The 788 acre lake was listed as a 303d impaired water body in 2008 due to elevated turbidity and algae levels. The Decatur SWCD has prioritized water quality protection efforts within the Little River Lake watershed because 1) portions of this watershed has been identified as the primary contributor of sediment and nutrients to Little River Lake, which provides an essential source of drinking water for Decatur County and the Southern Iowa Rural Water Association; 2) the watershed provides exemplary education and project interpretation opportunities due to its proximity to Little River Lake Recreation Area, and 3) by using targeted and proven soil conservation practices to address water quality deficiencies the probability of successfully attenuating soil erosion and ameliorating water quality impairments is enhanced. The specific goals of this proposal are to: 1. reduce annual sediment, and phosphorous delivery to the lake by 11,280 tons and 14,664 lbs., respectively, via applications of conservation practices on targeted agricultural land; 2. delist the lake as an EPA 303d impaired water body via water quality enhancement; 3. obtain a “Full Support” status for the lake’s aquatic life and recreational use; 4. reduce potable water treatment costs (minimum 50% cost reduction) associated with high suspended solid levels; and 5. restore a viable sport-fish population, thereby bolstering tourism and the economy. To achieve timely project implementation the Decatur SWCD has cooperated with the IDNR Watershed Improvement Section, Fisheries Bureau, and IDALS-DSC to assess extant water quality and watershed conditions, coalesced a diverse team of committed partners and secured matching funding from multiple sources.
Resumo:
Competine Creek is an 8,653 acre subwatershed of Whitebreast Creek which drains directly to Lake Red Rock. The Marion Soil and Water Conservation District has prioritized water quality protection efforts within Competine Creek subwatershed because 1) this watershed has been identified as a significant contributor of sediment, nutrients, and bacteria to Competine Creek and Lake Red Rock, 2) the watershed provides unique outreach opportunities due to its unique rural and urban interface, and 3) by using a targeted approach to address water quality, the likelihood of successfully demonstrating water quality improvements is high due to its manageable size. The specific goals of this proposal to WIRB (Phase I) are to: 1) reduce sediment and nutrient delivery by 1787 tons and 2144 lbs by installing conservation practices on high priority agricultural land; and 2) install urban conservation practices that reduce the volume of peak flow, improve streambank stability, and promote infiltration of stormwater runoff before it enters Competine Creek. The Marion SWCD has assembled a unique group of partners and secured funding from multiple sources to implement this project.
Resumo:
Twelve Mile Creek Lake is a 660 acre, Significant Publicly Owned Lake with a watershed of 14,820 acres for a ratio of 21:3. The watershed is predominately privately owned agricultural land that originates in Adair County and drains into the lake which serves as the primary source water for the City of Creston, Union County and the seven counties served by the Southern Iowa Rural Water Association. In recent years, frequent algae blooms and recurrent spikes in suspended solid concentrations have been inflating water treatment expenses for the Creston Municipal Utilities (CMU). Declining trends in water quality spurred CMU to enlist the Union Soil and Water Conservation District (SWCD) to assist in evaluating watershed conditions for potential upland improvements. Significant gully erosion issues that had been previously underestimated were discovered during this watershed assessment process. Newly acquired LiDAR elevation data readily revealed this concern which was previously obscured from view by the dense tree canopy. A Watershed Development and Planning Assistance Grant Application was approved and funded by the Iowa Department of Ag and Land Stewardship- Division of Soil Conservation. Throughout the planning process, project partners innovatively evaluated and prioritized a number of resource concerns throughout the watershed. The implementation plan presented will thwart these threats which left unaided will continue to diminish the overall health of the system, reduce the appeal of the lake to recreational users, and contribute to higher water treatment costs.
Resumo:
Biochar has the potential to make a major contribution to the mitigation of climate change, and enhancement of plant production. However, in order for biochar to fulfill this promise, the industry and regulating bodies must take steps to manage potential environmental threats and address negative perceptions. The potential threats to the sustainability of biochar systems, at each stage of the biochar life cycle, were reviewed. We propose that a sustainability framework for biochar could be adapted from existing frameworks developed for bioenergy. Sustainable land use policies, combined with effective regulation of biochar production facilities and incentives for efficient utilization of energy, and improved knowledge of biochar impacts on ecosystem health and productivity could provide a strong framework for the development of a robust sustainable biochar industry. Sustainability certification could be introduced to provide confidence to consumers that sustainable practices have been employed along the production chain, particularly where biochar is traded internationally.
Resumo:
Tämän tutkimuksen tavoitteena on tarkastella, mikä merkitys erilaisella osaamisella asiantuntijaorganisaatiossa, mitä osaamista organisaatiossa tarvitaan, selvittää mitä osaamista organisaatiossa on ja kuinka olemassa oleva osaaminen ja resurssit vastaavat tarpeita jatkuvan kilpailukyvyn ylläpitämiseksi. Kohdeorganisaationa tutkimuksessa on UPM-Kymmene, Metsä, Metsätalous- ja maankäyttö -yksikkö, Valkeakoskella. Tutkimuksen tarkoituksena on luoda pohja organisaation kehittämisohjelmalle.Tutkimuksen teoreettisina viitekehyksinä ovat eri tutkijoiden näkemykset tiedon ja osaamisen johtamisesta, tiedon ja osaamisen johtamisen sukupolvista, tiedon ja osaamisen johtamisen yhdistymisestä sekä näkemykset osaamisen kehittämisestä. Tutkimus osoittaa selkeästiosaamisen ja tiedon tärkeyden ja merkityksen organisaatiolle.
Resumo:
El valor de la tierra agraria está determinado por las características agronómicas de este input. Pero el precio de la tierra agraria con frecuencia supera al alza o a la baja su valor, debido a la existencia de una serie de factores no agronómicos (endógenos y exógenos al sector) que ejercen presiones en la determinación y evolución del precio. Desde esta perspectiva, el objetivo que se persigue es analizar los principales factores no agronómicos determinantes del precio del suelo rústico a partir de los años ochenta. El ámbito de estudio se centra en la provincia de Lleida y se distingue entre tierras de secano y de regadío. Las estimaciones realizadas muestran que los principales factores que explican el comportamiento de los precios de la tierra agraria son .el considerar la tierra como un refugio del capital, las subvenciones recibidas de la PAC y las expectativas de plusvalía.
Resumo:
Invasive species are an excellent opportunity to think about the nature society desires, particularly in the face of global changes. Nature and human views of nature are rapidly evolving; our approach to bio- logical invasions through biosecurity institutions and land management policies must evolve in tandem with these changes. We review three dimensions that are insufficiently addressed. First, biological inva- sions are culturally shaped and interpreted. Humans play a major role in the movement and nurturing of alien life, and esthetics, perception, and emotion are deeply implicated in the management of invasive species. What people fear or regret with invasive species are not their effects on nature per se, but their effects on a particular desired nature, and policymaking must reflect this. Second, biological invasions are not restricted to negative impacts. Invasions take place in landscapes where many natural condi- tions have been altered, so policy tools must recognize that invasive species are a functional, structural, and compositional part of transformed ecosystems. In some cases, native species benefit from changes in resource availability caused by invasions or from protections provided by an invasive plant. Finally, invasive species can help ecosystems and people to adapt to global change by maintaining ecosystem processes such as productivity, carbon storage, and nutrient cycling in a context of climate change or land cover transformations. While recognition is growing among ecologists that novel, invaded ecosystems have value, and while the on-the-ground application of biosecurity policies has of necessity adjusted to local contexts and other agendas, invasion biology could aid policymaking by better addressing the three complexities inherent in the three dimensions highlighted above.
Resumo:
We estimate how climate variables affect price and acreage of productive farmland using the Ricardian approach. Furthermore, we use our estimations to evaluate the joint effects of possible cli- mate changes within the time horizon of 2010 and 2050. Our results show that the price of rainfed land in Spain tends to increase but rainfed acreage decreases. On the other hand, the effect on irrigated farmland price and acreage presents some mixed results, however, in the long run the dominant pattern is clearly increasing for both prices and acreage.
Resumo:
We estimate the impact of the different climate variables on the value of Spanish farmland. We distinguish between irrigated and non-irrigated lands and use data on temperature, precipitations, physical and socioeconomic characteristics to measure these effects on farm prices and in the number of hectares of farmland. We conclude presenting the main results of our analysis, region by region, and examining the policies that could be more effective to prevent undesired effects.