470 resultados para Écoulement incompressible


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The non-linear motions of a gyrostat with an axisymmetrical, fluid-filled cavity are investigated. The cavity is considered to be completely filled with an ideal incompressible liquid performing uniform rotational motion. Helmholtz theorem, Euler's angular momentum theorem and Poisson equations are used to develop the disturbed Hamiltonian equations of the motions of the liquid-filled gyrostat subjected to small perturbing moments. The equations are established in terms of a set of canonical variables comprised of Euler angles and the conjugate angular momenta in order to facilitate the application of the Melnikov-Holmes-Marsden (MHM) method to investigate homoclinic/heteroclinic transversal intersections. In such a way, a criterion for the onset of chaotic oscillations is formulated for liquid-filled gyrostats with ellipsoidal and torus-shaped cavities and the results are confirmed via numerical simulations. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principal theme of this thesis is the in vivo examination of ocular morphological changes during phakic accommodation, with particular attention paid to the ciliary muscle and crystalline lens. The investigations detailed involved the application of high-resolution imaging techniques to facilitate the acquisition of new data to assist in the clarification of aspects of the accommodative system that were poorly understood. A clinical evaluation of the newly available Grand Seiko Auto Ref/ Keratometer WAM-5500 optometer was undertaken to assess its value in the field of accommodation research. The device was found to be accurate and repeatable compared to subjective refraction, and has the added advantage of allowing dynamic data collection at a frequency of around 5 Hz. All of the subsequent investigations applied the WAM-5500 for determination of refractive error and objective accommodative responses. Anterior segment optical coherence tomography (AS-OCT) based studies examined the morphology and contractile response of youthful and ageing ciliary muscle. Nasal versus temporal asymmetry was identified, with the temporal aspect being both thicker and demonstrating a greater contractile response. The ciliary muscle was longer in terms of both its anterior (r = 0.49, P <0.001) and overall length (r = 0.45, P = 0.02) characteristics, in myopes. The myopic ciliary muscle does not appear to be merely stretched during axial elongation, as no significant relationship between thickness and refractive error was identified. The main contractile responses observed were a thickening of the anterior region and a shortening of the muscle, particularly anteriorly. Similar patterns of response were observed in subjects aged up to 70 years, supporting a lensocentric theory of presbyopia development. Following the discovery of nasal/ temporal asymmetry in ciliary muscle morphology and response, an investigation was conducted to explore whether the regional variations in muscle contractility impacted on lens stability during accommodation. A bespoke programme was developed to analyse AS-OCT images and determine whether lens tilt and decentration varied between the relaxed and accommodated states. No significant accommodative difference in these parameters was identified, implying that any changes in lens stability with accommodation are very slight, as a possible consequence of vitreous support. Novel three-dimensional magnetic resonance imaging (MRI) and analysis techniques were used to investigate changes in lens morphology and ocular conformation during accommodation. An accommodative reduction in lens equatorial diameter provides further evidence to support the Helmholtzian mechanism of accommodation, whilst the observed increase in lens volume challenges the widespread assertion that this structure is incompressible due to its high water content. Wholeeye MRI indicated that the volume of the vitreous chamber remains constant during accommodation. No significant changes in ocular conformation were detected using MRI. The investigations detailed provide further insight into the mechanisms of accommodation and presbyopia, and represent a platform for future work in this field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability characteristics of an incompressible viscous pressure-driven flow of an electrically conducting fluid between two parallel boundaries in the presence of a transverse magnetic field are compared and contrasted with those of Plane Poiseuille flow (PPF). Assuming that the outer regions adjacent to the fluid layer are perfectly electrically insulating, the appropriate boundary conditions are applied. The eigenvalue problems are then solved numerically to obtain the critical Reynolds number Rec and the critical wave number ac in the limit of small Hartmann number (M) range to produce the curves of marginal stability. The non-linear two-dimensional travelling waves that bifurcate by way of a Hopf bifurcation from the neutral curves are approximated by a truncated Fourier series in the streamwise direction. Two and three dimensional secondary disturbances are applied to both the constant pressure and constant flux equilibrium solutions using Floquet theory as this is believed to be the generic mechanism of instability in shear flows. The change in shape of the undisturbed velocity profile caused by the magnetic field is found to be the dominant factor. Consequently the critical Reynolds number is found to increase rapidly with increasing M so the transverse magnetic field has a powerful stabilising effect on this type of flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – To propose and investigate a stable numerical procedure for the reconstruction of the velocity of a viscous incompressible fluid flow in linear hydrodynamics from knowledge of the velocity and fluid stress force given on a part of the boundary of a bounded domain. Design/methodology/approach – Earlier works have involved the similar problem but for stationary case (time-independent fluid flow). Extending these ideas a procedure is proposed and investigated also for the time-dependent case. Findings – The paper finds a novel variation method for the Cauchy problem. It proves convergence and also proposes a new boundary element method. Research limitations/implications – The fluid flow domain is limited to annular domains; this restriction can be removed undertaking analyses in appropriate weighted spaces to incorporate singularities that can occur on general bounded domains. Future work involves numerical investigations and also to consider Oseen type flow. A challenging problem is to consider non-linear Navier-Stokes equation. Practical implications – Fluid flow problems where data are known only on a part of the boundary occur in a range of engineering situations such as colloidal suspension and swimming of microorganisms. For example, the solution domain can be the region between to spheres where only the outer sphere is accessible for measurements. Originality/value – A novel variational method for the Cauchy problem is proposed which preserves the unsteady Stokes operator, convergence is proved and using recent for the fundamental solution for unsteady Stokes system, a new boundary element method for this system is also proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using suitable coupled Navier-Stokes Equations for an incompressible Newtonian fluid we investigate the linear and non-linear steady state solutions for both a homogeneously and a laterally heated fluid with finite Prandtl Number (Pr=7) in the vertical orientation of the channel. Both models are studied within the Large Aspect Ratio narrow-gap and under constant flux conditions with the channel closed. We use direct numerics to identify the linear stability criterion in parametric terms as a function of Grashof Number (Gr) and streamwise infinitesimal perturbation wavenumber (making use of the generalised Squire’s Theorem). We find higher harmonic solutions at lower wavenumbers with a resonance of 1:3exist, for both of the heating models considered. We proceed to identify 2D secondary steady state solutions, which bifurcate from the laminar state. Our studies show that 2D solutions are found not to exist in certain regions of the pure manifold, where we find that 1:3 resonant mode 2D solutions exist, for low wavenumber perturbations. For the homogeneously heated fluid, we notice a jump phenomenon existing between the pure and resonant mode secondary solutions for very specific wavenumbers .We attempt to verify whether mixed mode solutions are present for this model by considering the laterally heated model with the same geometry. We find mixed mode solutions for the laterally heated model showing that a bridge exists between the pure and 1:3 resonant mode 2D solutions, of which some are stationary and some travelling. Further, we show that for the homogeneously heated fluid that the 2D solutions bifurcate in hopf bifurcations and there exists a manifold where the 2D solutions are stable to Eckhaus criterion, within this manifold we proceed to identify 3D tertiary solutions and find that the stability for said 3D bifurcations is not phase locked to the 2D state. For the homogeneously heated model we identify a closed loop within the neutral stability curve for higher perturbation wavenumubers and analyse the nature of the multiple 2D bifurcations around this loop for identical wavenumber and find that a temperature inversion occurs within this loop. We conclude that for a homogeneously heated fluid it is possible to have abrup ttransitions between the pure and resonant 2D solutions, and that for the laterally heated model there exist a transient bifurcation via mixed mode solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions of wakes in a flow past a row of square bars, which is placed across a uniform flow, are investigated by numerical simulations and experiments on the tassumption that the flow is two-dimensional and incompressible. At small Reynolds numbers the flow is steady and symmetric with respect not only to streamwise lines through the center of each square bar but also to streamwise centerlines between adjacent square bars. However, the steady symmetric flow becomes unstable at larger Reynolds numbers and make a transition to a steady asymmetric flow with respect to the centerlines between adjacent square bars in some cases or to an oscillatory flow in other cases. It is found that vortices are shed synchronously from adjacent square bars in the same phase or in anti-phase depending upon the distance between the bars when the flow is oscillatory. The origin of the transition to the steady asymmetric flow is identified as a pitchfork bifurcation, while the oscillatory flows with synchronous shedding of vortices are clarified to originate from a Hopf bifurcation. The critical Reynolds numbers of the transitions are evaluated numerically and the bifurcation diagram of the flow is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions between the wakes in a flow past a row of square bars are investigated by numerical simulations, the linear stability analysis and the bifurcation analysis. It is assumed that the row of square bars is placed across a uniform flow. Two-dimensional and incompressible flow field is also assumed. The flow is steady and symmetric along a streamwise centerline through the center of each square bar at low Reynolds numbers. However, it becomes unsteady and periodic in time at the Reynolds numbers larger than a critical value, and then the wakes behind the square bars become oscillatory. It is found by numerical simulations that vortices are shed synchronously from every couple of adjacent square bars in the same phase or in the anti-phase depending upon the distance between the bars. The synchronous shedding of vortices is clarified to occur due to an instability of the steady symmetric flow by the linear stability analysis. The bifurcation diagram of the flow is obtained and the critical Reynolds number of the instability is evaluated numerically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this master thesis, we propose a multiscale mathematical and computational model for electrokinetic phenomena in porous media electrically charged. We consider a porous medium rigid and incompressible saturated by an electrolyte solution containing four monovalent ionic solutes completely diluted in the aqueous solvent. Initially we developed the modeling electrical double layer how objective to compute the electrical potential, surface density of electrical charges and considering two chemical reactions, we propose a 2-pK model for calculating the chemical adsorption occurring in the domain of electrical double layer. Having the nanoscopic model, we deduce a model in the microscale, where the electrochemical adsorption of ions, protonation/ deprotonation reactions and zeta potential obtained in the nanoscale, are incorporated through the conditions of interface uid/solid of the Stokes problem and transportation of ions, modeled by equations of Nernst-Planck. Using the homogenization technique of periodic structures, we develop a model in macroscopic scale with respective cells problems for the e ective macroscopic parameters of equations. Finally, we propose several numerical simulations of the multiscale model for uid ow and transport of reactive ionic solute in a saturated aqueous solution of kaolinite. Using nanoscopic model we propose some numerical simulations of electrochemical adsorption phenomena in the electrical double layer. Making use of the nite element method discretize the macroscopic model and propose some numerical simulations in basic and acid system aiming to quantify the transport of ionic solutes in porous media electrically charged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this master thesis, we propose a multiscale mathematical and computational model for electrokinetic phenomena in porous media electrically charged. We consider a porous medium rigid and incompressible saturated by an electrolyte solution containing four monovalent ionic solutes completely diluted in the aqueous solvent. Initially we developed the modeling electrical double layer how objective to compute the electrical potential, surface density of electrical charges and considering two chemical reactions, we propose a 2-pK model for calculating the chemical adsorption occurring in the domain of electrical double layer. Having the nanoscopic model, we deduce a model in the microscale, where the electrochemical adsorption of ions, protonation/ deprotonation reactions and zeta potential obtained in the nanoscale, are incorporated through the conditions of interface uid/solid of the Stokes problem and transportation of ions, modeled by equations of Nernst-Planck. Using the homogenization technique of periodic structures, we develop a model in macroscopic scale with respective cells problems for the e ective macroscopic parameters of equations. Finally, we propose several numerical simulations of the multiscale model for uid ow and transport of reactive ionic solute in a saturated aqueous solution of kaolinite. Using nanoscopic model we propose some numerical simulations of electrochemical adsorption phenomena in the electrical double layer. Making use of the nite element method discretize the macroscopic model and propose some numerical simulations in basic and acid system aiming to quantify the transport of ionic solutes in porous media electrically charged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.

We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.

Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les polygones à coin de glace sont très répandus dans la zone du pergélisol continu. Lorsque le ruissellement d’eau de fonte nivale s’infiltre de façon concentrée dans une cavité, il peut initier le processus de thermo-érosion du pergélisol (notamment des coins de glace) pouvant mener à la formation de ravins. Dans la vallée de Qalikturvik sur l’Ile Bylot (NU, Canada), le développement de ravins de thermo-érosion dans un milieu de polygones à coins de glace entraîne comme impact : i. la réorganisation des réseaux de drainage impliquant un assèchement des milieux humides en marge des chenaux d’érosion, ii. des variations dans le régime thermique et de l’humidité de proche-surface et iii. la prise en charge et le déplacement des sédiments vers l’extérieur du bassin-versant. L’objectif de cette thèse vise à approfondir les connaissances géomorphologiques propres au ravinement par thermo-érosion, d’examiner, caractériser et quantifier les impacts du ravinement (tel que sus-mentionné en i. ii. iii.) et le rôle de celui-ci dans une optique d’évolution du paysage périglaciaire à l’échelle temporelle de l’année à la décennie. Les ravins sont dynamiques : un ravin en particulier déclenché en 1999 et étudié depuis s’érodait à une vitesse de 38 à 50 m/a durant sa première décennie d’existence, pour atteindre une longueur totale de ~750 m et une surface érodée de ~25 000 m² en 2009. Des puits sont localisés près des zones de ravinement actives ; des levées alluviale, mares et polygones effondrés dans les zones stabilisées post-perturbation. Sur la terrasse de polygones recouvrant le plancher de la vallée au site à l’étude, 35 ravins furent identifiés et 1401 polygones furent perturbés avec 200 000 m³ de sols transportés. Une amélioration du drainage, une dégradation de la capacité de rétention de l’humidité, une transition d’un écoulement de ruissellement vers un écoulement canalisé caractérise les aires ravinées et leurs environs. Les polygones intacts sont homogènes d’un à l’autre et dans leurs centres ; les polygones perturbés ont une réponse hétérogène (flore, humidité et régime thermique). Les milieux érodés hétérogènes succèdent aux milieux homogènes et deviennent le nouvel état d’équilibre pour plusieurs décennies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.