13 resultados para Écoulement incompressible

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis outlines the construction of several types of structured integrators for incompressible fluids. We first present a vorticity integrator, which is the Hamiltonian counterpart of the existing Lagrangian-based fluid integrator. We next present a model-reduced variational Eulerian integrator for incompressible fluids, which combines the efficiency gains of dimension reduction, the qualitative robustness to coarse spatial and temporal resolutions of geometric integrators, and the simplicity of homogenized boundary conditions on regular grids to deal with arbitrarily-shaped domains with sub-grid accuracy.

Both these numerical methods involve approximating the Lie group of volume-preserving diffeomorphisms by a finite-dimensional Lie-group and then restricting the resulting variational principle by means of a non-holonomic constraint. Advantages and limitations of this discretization method will be outlined. It will be seen that these derivation techniques are unable to yield symplectic integrators, but that energy conservation is easily obtained, as is a discretized version of Kelvin's circulation theorem.

Finally, we outline the basis of a spectral discrete exterior calculus, which may be a useful element in producing structured numerical methods for fluids in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mean velocity profiles were measured in the 5” x 60” wind channel of the turbulence laboratory at the GALCIT, by the use of a hot-wire anemometer. The repeatability of results was established, and the accuracy of the instrumentation estimated. Scatter of experimental results is a little, if any, beyond this limit, although some effects might be expected to arise from variations in atmospheric humidity, no account of this factor having been taken in the present work. Also, slight unsteadiness in flow conditions will be responsible for some scatter.

Irregularities of a hot-wire in close proximity to a solid boundary at low speeds were observed, as have already been found by others.

That Kármán’s logarithmic law holds reasonably well over the main part of a fully developed turbulent flow was checked, the equation u/ut = 6.0 + 6.25 log10 yut/v being obtained, and, as has been previously the case, the experimental points do not quite form one straight line in the region where viscosity effects are small. The values of the constants for this law for the best over-all agreement were determined and compared with those obtained by others.

The range of Reynolds numbers used (based on half-width of channel) was from 20,000 to 60,000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, a collection of novel numerical techniques culminating in a fast, parallel method for the direct numerical simulation of incompressible viscous flows around surfaces immersed in unbounded fluid domains is presented. At the core of all these techniques is the use of the fundamental solutions, or lattice Green’s functions, of discrete operators to solve inhomogeneous elliptic difference equations arising in the discretization of the three-dimensional incompressible Navier-Stokes equations on unbounded regular grids. In addition to automatically enforcing the natural free-space boundary conditions, these new lattice Green’s function techniques facilitate the implementation of robust staggered-Cartesian-grid flow solvers with efficient nodal distributions and fast multipole methods. The provable conservation and stability properties of the appropriately combined discretization and solution techniques ensure robust numerical solutions. Numerical experiments on thin vortex rings, low-aspect-ratio flat plates, and spheres are used verify the accuracy, physical fidelity, and computational efficiency of the present formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical approximations of nonunique solutions of the Navier-Stokes equations are obtained for steady viscous incompressible axisymmetric flow between two infinite rotating coaxial disks. For example, nineteen solutions have been found for the case when the disks are rotating with the same speed but in opposite direction. Bifurcation and perturbed bifurcation phenomena are observed. An efficient method is used to compute solution branches. The stability of solutions is analyzed. The rate of convergence of Newton's method at singular points is discussed. In particular, recovery of quadratic convergence at "normal limit points" and bifurcation points is indicated. Analytical construction of some of the computed solutions using singular perturbation techniques is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six topics in incompressible, inviscid fluid flow involving vortex motion are presented. The stability of the unsteady flow field due to the vortex filament expanding under the influence of an axial compression is examined in the first chapter as a possible model of the vortex bursting observed in aircraft contrails. The filament with a stagnant core is found to be unstable to axisymmetric disturbances. For initial disturbances with the form of axisymmetric Kelvin waves, the filament with a uniformly rotating core is neutrally stable, but the compression causes the disturbance to undergo a rapid increase in amplitude. The time at which the increase occurs is, however, later than the observed bursting times, indicating the bursting phenomenon is not caused by this type of instability.

In the second and third chapters the stability of a steady vortex filament deformed by two-dimensional strain and shear flows, respectively, is examined. The steady deformations are in the plane of the vortex cross-section. Disturbances which deform the filament centerline into a wave which does not propagate along the filament are shown to be unstable and a method is described to calculate the wave number and corresponding growth rate of the amplified waves for a general distribution of vorticity in the vortex core.

In Chapter Four exact solutions are constructed for two-dimensional potential flow over a wing with a free ideal vortex standing over the wing. The loci of positions of the free vortex are found and the lift is calculated. It is found that the lift on the wing can be significantly increased by the free vortex.

The two-dimensional trajectories of an ideal vortex pair near an orifice are calculated in Chapter Five. Three geometries are examined, and the criteria for the vortices to travel away from the orifice are determined.

Finally, Chapter Six reproduces completely the paper, "Structure of a linear array of hollow vortices of finite cross-section," co-authored with G. R. Baker and P. G. Saffman. Free streamline theory is employed to construct an exact steady solution for a linear array of hollow, or stagnant cored vortices. If each vortex has area A and the separation is L, then there are two possible shapes if A^(1/2)/L is less than 0.38 and none if it is larger. The stability of the shapes to two-dimensional, periodic and symmetric disturbances is considered for hollow vortices. The more deformed of the two possible shapes is found to be unstable, while the less deformed shape is stable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis covers four different problems in the understanding of vortex sheets, and these are presented in four chapters.

In Chapter 1, free streamline theory is used to determine the steady solutions of an array of identical, hollow or stagnant core vortices in an inviscid, incompressible fluid. Assuming the array is symmetric to rotation through π radians about an axis through any vortex centre, there are two solutions or no solutions depending on whether A^(1/2)/L is less than or greater than 0.38 where A is the area of the vortex and L is the separation distance. Stability analysis shows that the more deformed shape is unstable to infinitesimal symmetric disturbances which leave the centres of the vortices undisplaced.

Chapter 2 is concerned with the roll-up of vortex sheets in homogeneous fluid. The flow over conventional and ring wings is used to test the method of Fink and Soh (1974). Despite modifications which improve the accuracy of the method, unphysical results occur. A possible explanation for this is that small scales are important and an alternate method based on "Cloud-in-Cell" techniques is introduced. The results show small scale growth and amalgamation into larger structures.

The motion of a buoyant pair of line vortices of opposite circulation is considered in Chapter 3. The density difference between the fluid carried by the vortices and the fluid outside is considered small, so that the Boussinesq approximation may be used. A macroscopic model is developed which shows the formation of a detrainment filament and this is included as a modification to the model. The results agree well with the numerical solution as developed by Hill (1975b) and show that after an initial slowdown, the vortices begin to accelerate downwards.

Chapter 4 reproduces completely a paper that has already been published (Baker, Barker, Bofah and Saffman (1974)) on the effect of "vortex wandering" on the measurement of velocity profiles of the trailing vortices behind a wing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of the slow viscous flow of a gas past a sphere is considered. The fluid cannot be treated incompressible in the limit when the Reynolds number Re, and the Mach number M, tend to zero in such a way that Re ~ o(M^2 ). In this case, the lowest order approximation to the steady Navier-Stokes equations of motion leads to a paradox discovered by Lagerstrom and Chester. This paradox is resolved within the framework of continuum mechanics using the classical slip condition and an iteration scheme that takes into account certain terms in the full Navier-Stokes equations that drop out in the approximation used by the above authors. It is found however that the drag predicted by the theory does not agree with R. A. Millikan's classic experiments on sphere drag.

The whole question of the applicability of the Navier-Stokes theory when the Knudsen number M/Re is not small is examined. A new slip condition is proposed. The idea that the Navier-Stokes equations coupled with this condition may adequately describe small Reynolds number flows when the Knudsen number is not too large is looked at in some detail. First, a general discussion of asymptotic solutions of the equations for all such flows is given. The theory is then applied to several concrete problems of fluid motion. The deductions from this theory appear to interpret and summarize the results of Millikan over a much wider range of Knudsen numbers (almost up to the free molecular or kinetic limit) than hitherto Believed possible by a purely continuum theory. Further experimental tests are suggested and certain interesting applications to the theory of dilute suspensions in gases are noted. Some of the questions raised in the main body of the work are explored further in the appendices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We simulate incompressible, MHD turbulence using a pseudo-spectral code. Our major conclusions are as follows.

1) MHD turbulence is most conveniently described in terms of counter propagating shear Alfvén and slow waves. Shear Alfvén waves control the cascade dynamics. Slow waves play a passive role and adopt the spectrum set by the shear Alfvén waves. Cascades composed entirely of shear Alfvén waves do not generate a significant measure of slow waves.

2) MHD turbulence is anisotropic with energy cascading more rapidly along k than along k, where k and k refer to wavevector components perpendicular and parallel to the local magnetic field. Anisotropy increases with increasing k such that excited modes are confined inside a cone bounded by k ∝ kγ where γ less than 1. The opening angle of the cone, θ(k) ∝ k-(1-γ), defines the scale dependent anisotropy.

3) MHD turbulence is generically strong in the sense that the waves which comprise it suffer order unity distortions on timescales comparable to their periods. Nevertheless, turbulent fluctuations are small deep inside the inertial range. Their energy density is less than that of the background field by a factor θ2 (k)≪1.

4) MHD cascades are best understood geometrically. Wave packets suffer distortions as they move along magnetic field lines perturbed by counter propagating waves. Field lines perturbed by unidirectional waves map planes perpendicular to the local field into each other. Shear Alfvén waves are responsible for the mapping's shear and slow waves for its dilatation. The amplitude of the former exceeds that of the latter by 1/θ(k) which accounts for dominance of the shear Alfvén waves in controlling the cascade dynamics.

5) Passive scalars mixed by MHD turbulence adopt the same power spectrum as the velocity and magnetic field perturbations.

6) Decaying MHD turbulence is unstable to an increase of the imbalance between the flux of waves propagating in opposite directions along the magnetic field. Forced MHD turbulence displays order unity fluctuations with respect to the balanced state if excited at low k by δ(t) correlated forcing. It appears to be statistically stable to the unlimited growth of imbalance.

7) Gradients of the dynamic variables are focused into sheets aligned with the magnetic field whose thickness is comparable to the dissipation scale. Sheets formed by oppositely directed waves are uncorrelated. We suspect that these are vortex sheets which the mean magnetic field prevents from rolling up.

8) Items (1)-(5) lend support to the model of strong MHD turbulence put forth by Goldreich and Sridhar (1995, 1997). Results from our simulations are also consistent with the GS prediction γ = 2/3. The sole not able discrepancy is that the 1D power law spectra, E(k) ∝ k-∝, determined from our simulations exhibit ∝ ≈ 3/2, whereas the GS model predicts ∝ = 5/3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrodynamic forces acting on a solid particle in a viscous, incompressible fluid medium at low Reynolds number flow is investigated mathematically as a prerequisite to the understanding of transport processes in two-phase flow involving solid particles and fluid. Viscous interaction between a small number of spherical particles and continuous solid boundaries as well as fluid interface are analyzed under a “point-force” approximation. Non-spherical and elastic spherical particles in a simple shear flow area are then considered. Non-steady motion of a spherical particle is briefly touched upon to illustrate the transient effect of particle motion.

A macroscopic continuum description of particle-fluid flow is formulated in terms of spatial averages yielding a set of particle continuum and bulk fluid equations. Phenomenological formulas describing the transport processes in a fluid medium are extended to cases where the volume concentration of solid particles is sufficiently high to exert an important influence. Hydrodynamic forces acting on a spherical solid particle in such a system, e.g. drag, torque, rotational coupling force, and viscous collision force between streams of different sized particles moving relative to each other are obtained. Phenomenological constants, such as the shear viscosity coefficient, and the diffusion coefficient of the bulk fluid, are found as a function of the material properties of the constituents of the two-phase system and the volume concentration of solid. For transient heat conduction phenomena, it is found that the introduction of a complex conductivity for the bulk fluid permits a simple mathematical description of this otherwise complicated process. The rate of heat transfer between particle continuum and bulk fluid is also investigated by means of an Oseen-type approximation to the energy equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The important features of the two-dimensional incompressible turbulent flow over a wavy surface of wavelength comparable with the boundary layer thickness are analyzed.

A turbulent field method using model equation for turbulent shear stress similar to the scheme of Bradshaw, Ferriss and Atwell (1967) is employed with suitable modification to cover the viscous sublayer. The governing differential equations are linearized based on the small but finite amplitude to wavelength ratio. An orthogonal wavy coordinate system, accurate to the second order in the amplitude ratio, is adopted to avoid the severe restriction to the validity of linearization due to the large mean velocity gradient near the wall. Analytic solution up to the second order is obtained by using the method of matched-asymptotic-expansion based on the large Reynolds number and hence the small skin friction coefficient.

In the outer part of the layer, the perturbed flow is practically "inviscid." Solutions for the velocity, Reynolds stress and also the wall pressure distributions agree well with the experimental measurement. In the wall region where the perturbed Reynolds stress plays an important role in the process of momentum transport, only a qualitative agreement is obtained. The results also show that the nonlinear second-order effect is negligible for amplitude ratio of 0.03. The discrepancies in the detailed structure of the velocity, shear stress, and skin friction distributions near the wall suggest modifications to the model are required to describe the present problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sudden axial acceleration of a column of liquid bounded at one end by a concave free surface has been found, experimentally, to produce a jet which issues from the free surface with a speed several times that imparted to the column.

Theoretical approximations to such flows, valid for small time, are formulated subject to the assumption that the fluid is inviscid and incompressible. In a special two-dimensional case, it is found that, for vanishingly small time, the velocity at the point on the free surface from which the jet emanates is π/2 times the velocity imparted to the column. The solutions to several problems in two and three dimensions assuming that the initial curvature of the free surface is small, lead to values for this ratio dependent upon the curvature—the initial velocity in the case of axial symmetry exceeding that of the analogous two-dimensional problem by approximately 25%.

Experiments conducted upon the phenomenon give values systematically in excess of those predicted by the theory, although theory and experiment are in qualitative agreement with respect to the displacement of the free surface. It is suggested that the discrepancy is attributable to effects of finite curvature having been imperfectly accounted for in the axially-symmetric analysis.

Photographic materials on pp. 115, 120, and 121 are essential and will not reproduce clearly on Xerox copies. Photographic copies should be ordered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Earth's largest geoid anomalies occur at the lowest spherical harmonic degrees, or longest wavelengths, and are primarily the result of mantle convection. Thermal density contrasts due to convection are partially compensated by boundary deformations due to viscous flow whose effects must be included in order to obtain a dynamically consistent model for the geoid. These deformations occur rapidly with respect to the timescale for convection, and we have analytically calculated geoid response kernels for steady-state, viscous, incompressible, self-gravitating, layered Earth models which include the deformation of boundaries due to internal loads. Both the sign and magnitude of geoid anomalies depend strongly upon the viscosity structure of the mantle as well as the possible presence of chemical layering.

Correlations of various global geophysical data sets with the observed geoid can be used to construct theoretical geoid models which constrain the dynamics of mantle convection. Surface features such as topography and plate velocities are not obviously related to the low-degree geoid, with the exception of subduction zones which are characterized by geoid highs (degrees 4-9). Recent models for seismic heterogeneity in the mantle provide additional constraints, and much of the low-degree (2-3) geoid can be attributed to seismically inferred density anomalies in the lower mantle. The Earth's largest geoid highs are underlain by low density material in the lower mantle, thus requiring compensating deformations of the Earth's surface. A dynamical model for whole mantle convection with a low viscosity upper mantle can explain these observations and successfully predicts more than 80% of the observed geoid variance.

Temperature variations associated with density anomalies in the man tie cause lateral viscosity variations whose effects are not included in the analytical models. However, perturbation theory and numerical tests show that broad-scale lateral viscosity variations are much less important than radial variations; in this respect, geoid models, which depend upon steady-state surface deformations, may provide more reliable constraints on mantle structure than inferences from transient phenomena such as postglacial rebound. Stronger, smaller-scale viscosity variations associated with mantle plumes and subducting slabs may be more important. On the basis of numerical modelling of low viscosity plumes, we conclude that the global association of geoid highs (after slab effects are removed) with hotspots and, perhaps, mantle plumes, is the result of hot, upwelling material in the lower mantle; this conclusion does not depend strongly upon plume rheology. The global distribution of hotspots and the dominant, low-degree geoid highs may correspond to a dominant mode of convection stabilized by the ancient Pangean continental assemblage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem considered is that of minimizing the drag of a symmetric plate in infinite cavity flow under the constraints of fixed arclength and fixed chord. The flow is assumed to be steady, irrotational, and incompressible. The effects of gravity and viscosity are ignored.

Using complex variables, expressions for the drag, arclength, and chord, are derived in terms of two hodograph variables, Γ (the logarithm of the speed) and β (the flow angle), and two real parameters, a magnification factor and a parameter which determines how much of the plate is a free-streamline.

Two methods are employed for optimization:

(1) The parameter method. Γ and β are expanded in finite orthogonal series of N terms. Optimization is performed with respect to the N coefficients in these series and the magnification and free-streamline parameters. This method is carried out for the case N = 1 and minimum drag profiles and drag coefficients are found for all values of the ratio of arclength to chord.

(2) The variational method. A variational calculus method for minimizing integral functionals of a function and its finite Hilbert transform is introduced, This method is applied to functionals of quadratic form and a necessary condition for the existence of a minimum solution is derived. The variational method is applied to the minimum drag problem and a nonlinear integral equation is derived but not solved.