964 resultados para wound-healing
Resumo:
Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline whole-blood values due to processing and concentration. PRP is used in various surgical fields to enhance soft-tissue and bone healing by delivering supra-physiological concentrations of autologous platelets at the site of tissue damage. These preparations may provide a good cellular source of various growth factors and cytokines, and modulate tissue response to injury. Common clinically available materials for blood preparations combined with a two-step centrifugation protocol at 280g each, to ensure cellular component integrity, provided platelet preparations which were concentrated 2-3 fold over total blood values. Costs were shown to be lower than those of other methods which require specific equipment and high-cost disposables, while safety and traceability can be increased. PRP can be used for the treatment of wounds of all types including burns and also of split-thickness skin graft donor sites, which are frequently used in burn management. The procedure can be standardized and is easy to adapt in clinical settings with minimal infrastructure, thus enabling large numbers of patients to benefit from a form of cellular therapy.
Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons.
Resumo:
Plasmacytoid dendritic cells (pDCs) are specialized type I interferon (IFN-α/β)-producing cells that express intracellular toll-like receptor (TLR) 7 and TLR9 and recognize viral nucleic acids in the context of infections. We show that pDCs also have the ability to sense host-derived nucleic acids released in common skin wounds. pDCs were found to rapidly infiltrate both murine and human skin wounds and to transiently produce type I IFNs via TLR7- and TLR9-dependent recognition of nucleic acids. This process was critical for the induction of early inflammatory responses and reepithelization of injured skin. Cathelicidin peptides, which facilitate immune recognition of released nucleic acids by promoting their access to intracellular TLR compartments, were rapidly induced in skin wounds and were sufficient but not necessary to stimulate pDC activation and type I IFN production. These data uncover a new role of pDCs in sensing tissue damage and promoting wound repair at skin surfaces.
Resumo:
Maintenance of corneal transparency is crucial for vision and depends mainly on the endothelium, a non-proliferative monolayer of cells covering the inner part of the cornea. When endothelial cell density falls below a critical threshold, the barrier and "pump" functions of the endothelium are compromised which results in corneal oedema and loss of visual acuity. The conventional treatment for such severe disorder is corneal graft. Unfortunately, there is a worldwide shortage of donor corneas, necessitating amelioration of tissue survival and storage after harvesting. Recently it was reported that the ROCK inhibitor Y-27632 promotes adhesion, inhibits apoptosis, increases the number of proliferating monkey corneal endothelial cells in vitro and enhance corneal endothelial wound healing both in vitro and in vivo in animal models. Using organ culture human cornea (N = 34), the effect of ROCK inhibitor was evaluated in vitro and ex vivo. Toxicity, corneal endothelial cell density, cell proliferation, apoptosis, cell morphometry, adhesion and wound healing process were evaluated by live/dead assay standard cell counting method, EdU labelling, Ki67, Caspase3, Zo-1 and Actin immunostaining. We demonstrated for the first time in human corneal endothelial cells ex vivo and in vitro, that ROCK inhibitor did not induce any toxicity effect and did not alter cell viability. ROCK inhibitor treatment did not induce human corneal endothelial cells proliferation. However, ROCK inhibitor significantly enhanced adhesion and wound healing. The present study shows that the selective ROCK inhibitor Y-27632 has no effect on human corneal endothelial cells proliferative capacities, but alters cellular behaviours. It induces changes in cell shape, increases cell adhesion and enhances wound healing ex vivo and in vitro. Its absence of toxicity, as demonstrated herein, is relevant for its use in human therapy.
Resumo:
BACKGROUND: Wound healing involves complex mechanisms, which, if properly chaperoned, can enhance patient recovery. The abilities of platelets and keratinocytes may be harnessed in order to stimulate wound healing through the formation of platelet clots, the release of several growth factors and cytokines, and cell proliferation. The aim of the study was to test whether autologous keratinocyte suspensions in platelet concentrate would improve wound healing. The study was conducted at the Lausanne University Hospital, Switzerland in 45 patients, randomized to three different topical treatment groups: standard treatment serving as control, autologous platelet concentrate (PC) and keratinocytes suspended in autologous platelet concentrate (PC + K). Split thickness skin graft donor sites were chosen on the anterolateral thighs of patients undergoing plastic surgery for a variety of defects. Wound healing was assessed by the duration and quality of the healing process. Pain intensity was evaluated at day five. RESULTS: Healing time was reduced from 13.9 ± 0.5 days (mean ± SEM) in the control group to 7.2 ± 0.2 days in the PC group (P < 0.01). An addition of keratinocytes in suspension further reduced the healing time to 5.7 ± 0.2 days. Pain was reduced in both the PC and PC + K groups. Data showed a statistically detectable advantage of using PC + K over PC alone (P < 0.01). CONCLUSION: The results demonstrate the positive contribution of autologous platelets combined with keratinocytes in stimulating wound healing and reducing pain. This strikingly simple approach could have a significant impact on patient care, especially critically burned victims for whom time is of the essence. CLINICAL TRIAL REGISTRY INFORMATION: Protocol Record Identification Number: 132/03Registry URL: http://www.clinicaltrials.gov.
Resumo:
Phenytoin is an anticonvulsant that has been used in wound healing. The objectives of this study were to describe how the scientific production presents the use ofphenytoinas a healing agent and to discuss its applicability in wounds. A literature review and hierarchy analysis of evidence-based practices was performed. Eighteen articles were analyzed that tested the intervention in wounds such as leprosy ulcers, leg ulcers, diabetic foot ulcers, pressure ulcers, trophic ulcers, war wounds, burns, preparation of recipient graft area, radiodermatitis and post-extraction of melanocytic nevi. Systemic use ofphenytoinin the treatment of fistulas and the hypothesis of topical use in the treatment of vitiligo were found. In conclusion, topical use ofphenytoinis scientifically evidenced. However robust research is needed that supports a protocol for the use ofphenytoinas another option of a healing agent in clinical practice.
Resumo:
The study aimed to find scientific evidence about the duration of preoperative smoking cessation required to reduce surgical wound healing complications. An integrative review was performed in the databases, Latin American and Caribbean Literature on Health Sciences (LILACS) and Medical Literature Analysis and Retrieval System Online (MEDLINE), from 08/17/2012 to 09/17/2012, using the keywords: tobacco use cessation and wound healing; tobacco use cessation and preoperative period; tobacco use cessation and perioperative period (LILACS) and tobacco use cessation and perioperative period; tobacco use cessation and wound healing (MEDLINE). Out of the 81 eligible studies, 12 were included. The duration of smoking cessation needed to reduce healing complications was at least four weeks (four studies with level of evidence I, three studies with level of evidence II, two studies with level of evidence IV, and one study with level of evidence VII).
Resumo:
RESUME L'homéostasie du tissu cutané est assurée par des interactions étroites entre les cellules le composant et par l'équilibre entre la différenciation et la prolifération des kératinocytes devant permettre un renouvellement constant du tissu. Après une blessure, les kératinocytes environnant la zone blessée sont activés par des cytokines. Ils acquièrent alors un phénotype migratoire qui s'accompagne d'une modulation de l'activité protéolytique de la matrice extra cellulaire, d'une modulation de la dynamique du cytosquelette d'active, de la polarisation de la cellule, de l'affaiblissement des contacts entre cellules et de changements dans leurs contacts avec la matrice extra cellulaire. PPARβ est un facteur de transcription activé par les acides gras et leurs dérivés. Il appartient à la famille des récepteurs nucléaires aux hormones et son expression est avérée dans les kératinocytes des follicules pileux et dans les kératinocytes inter-folliculaires activés par la blessure cutanée. Le rôle de PPARβ dans la peau est principalement lié à son effet protecteur contre l'apoptose ainsi qu'à son implication dans l'équilibre dynamique entre la prolifération et la différentiation des kératinocytes. L'objet de ce travail fut de déterminer le rôle de PPARβ dans les processus d'adhésion et de migration des kératinocytes activés durant la régénération de l'épithélium blessé. Nous avons montré que les souris dépourvues du gène codant pour PPARβ ont de sévères imperfections affectant la morphologie de l'épithélium. Ce phénotype est corrélé à la modulation imparfaite du réseau d'active chez les souris dépourvues de PPARβ, à un défaut de localisation de l'intégrine α3 impliquée dans les complexes induisant la migration cellulaire, ainsi qu'à la modulation de l'expression d'acteurs majeurs affectant l'activité protéolytique de la matrice extra cellulaire. En conclusion, nos résultats montrent que PPARβ est impliqué dans le contrôle de la dynamique du cytosquelette d'active et la polarisation des kératinocytes activés. PPARβ étant impliqué dans l'acquisition d'un phénotype migratoire, il est légitime de se demander s'il intervient de même dans d'autres types cellulaires, par exemple dans la transition épithéliale-mésenchymateuse durant le développement, ou encore la progression de cellules tumorales. SUMMARY Highly coordinated intercellular interactions and single cell metabolism ensure cell and tissue maintenance of the skin. Healing of a skin wound involves keratinocyte activation by cytokines and growth factors. Activated keratinocytes acquire a motile phenotype that requires extracellular matrix remodeling and subsequent ligand activation through proteolytic activity, as well as cytoskeletal reorganisation induced by the release of cell-cell junctions and by the signalling relayed via integrin receptors and their cytoplasmic adaptors. PPARβ is a transcription factor activated by polyunsaturated fatty acids and fatty acid derivatives which belong to the nuclear hormone receptor superfamily. It is expressed in activated keratinocytes where it plays an essential role in protecting them from apoptosis. In addition, it plays an important function in hair follicle morphogenesis at the time of elongation, via the regulation of the balance between keratinocyte differentiation and proliferation. The aim of the present work was to determine if PPARβ is also involved in the regulation of migration and adhesion properties of keratinocytes during skin wound healing. We have shown that wounded PPARβ null mice display severe abnormalities of the keratinocyte migratory layer as shown at the histological level and using three-dimensional reconstruction. This altered migratory phenotype is correlated to altered dynamic of the actin cytoskeleton network, impaired α3 integrin localisation in migrating keratinocytes and changes in the expression of a key actor involved in extracellular matrix proteolytic activity. These results show that PPARβ is implicated in the fine tuning of the actin network organisation and the polarisation of activated keratinocytes following an epithelial wound. Whether these mechanisms are also controlled by PPARβ in other cell types during epithelial mesenchymal transition or tumour cell progression is an interesting question to rise.
Resumo:
Engineering of fetal tissue has a high potential for the treatment of acute and chronic wounds of the skin in humans as these cells have high expansion capacity under simple culture conditions and one organ donation can produce Master Cell Banks which can fabricate over 900 million biological bandages (9 x 12cm). In a Phase 1 clinical safety study, cases are presented for the treatment of therapy resistant leg ulcers. All eight patients, representing 13 ulcers, tolerated multiple treatments with fetal biological bandages showing no negative secondary effects and repair processes similar to that seen in 3rd degree burns. Differential gene profiling using Affymetrix gene chips (analyzing 12,500 genes) were accomplished on these banked fetal dermal skin cells compared to banked dermal skin cells of an aged donor in order to point to potential indicators of wound healing. Families of genes involved in cell adhesion and extracellular matrix, cell cycle, cellular signaling, development and immune response show significant differences in regulation between banked fetal and those from banked old skin cells: with approximately 47.0% of genes over-expressed in fetal fibroblasts. It is perhaps these differences which contribute to efficient tissue repair seen in the clinic with fetal cell therapy.
Resumo:
In addition to their well-known antinociceptive action, opioids can modulate non-neuronal functions, such as immune activity and physiology of different cell types. Several findings suggest that the delta-opioid receptor (DOR) and its endogenous ligands (enkephalins) are important players in cell differentiation and proliferation. Here we show the expression of DOR in mouse skin and human skin cultured fibroblasts and keratinocytes using RT-PCR. In DOR knock-out (KO) mice, a phenotype of thinner epidermis and higher expression of cell differentiation marker cytokeratin 10 (CK 10) were observed compared with wild type (WT). Using a burn wound model, significant wound healing delay (about 2 days) and severe epidermal hypertrophy were shown at the wound margin of DOR KO mice. This wound healing delay was further investigated by immunohistochemistry using markers for proliferation, differentiation, re-epithelialization, and dermal repair (CK 6, CK 10, and collagen IV). The levels of all these markers were increased in wounds of KO mice compared with WT. During the wound healing, the epidermal thickness in KO mice augments faster and exceeds that of the WT by day 3. These results suggest an essential role of DOR in skin differentiation, proliferation, and migration, factors that are important for wound healing.
Resumo:
Peroxisome proliferator-activated receptor (PPAR) dysfunction has been implicated in the manifestation of many diseases and illnesses, ranging from obesity to cancer. Herein, we discuss the role of PPARbeta, one of the three PPAR isotypes, during wound healing. While PPARbeta expression is undetectable in unchallenged and healthy adult interfollicular mouse skin, it is robustly re-activated in stress situations, such as upon phorbol ester treatment, hair plucking and cutaneous wounding. The inflammatory reaction associated with a skin injury activates the keratinocytes at the edges of the wound. This activation involves PPARbeta, whose expression and activity as transcription factor are up-regulated by pro-inflammatory signals. The re-activation of PPARbeta influences three important properties of the activated keratinocytes that are vital for rapid wound closure, namely, survival, migration and differentiation. The anti-apoptotic and, thus, survival role of PPARbeta is mediated by the up-regulation of expression of integrin-linked kinase and 3-phosphoinositide-dependent kinase-1. Both kinases are required for the full activation of the Akt1 survival cascade. Therefore, the up-regulation of PPARbeta, early after injury, appears to be important to maintain a sufficient number of viable keratinocytes at the wound edge. At a later stage of wound repair, the stimulation of keratinocyte migration and differentiation by PPARbeta is also likely to be important for the formation of a new epidermis at the wounded area. Consistent with these observations, the entire wound healing process is delayed in PPARbeta +/- mice and wound closure is retarded by 2-3 days. The multiple roles of PPARbeta in the complex keratinocyte response after injury and during skin repair certainly justify a further exploration of its potential as a target for wound healing drugs.
Resumo:
BACKGROUND: Suction-based wound healing devices with open-pore foam interfaces are widely used to treat complex tissue defects. The impact of changes in physicochemical parameters of the wound interfaces has not been investigated. METHODS: Full-thickness wounds in diabetic mice were treated with occlusive dressing or a suction device with a polyurethane foam interface varying in mean pore size diameter. Wound surface deformation on day 2 was measured on fixed tissues. Histologic cross-sections were analyzed for granulation tissue thickness (hematoxylin and eosin), myofibroblast density (α-smooth muscle actin), blood vessel density (platelet endothelial cell adhesion molecule-1), and cell proliferation (Ki67) on day 7. RESULTS: Polyurethane foam-induced wound surface deformation increased with polyurethane foam pore diameter: 15 percent (small pore size), 60 percent (medium pore size), and 150 percent (large pore size). The extent of wound strain correlated with granulation tissue thickness that increased 1.7-fold in small pore size foam-treated wounds, 2.5-fold in medium pore size foam-treated wounds, and 4.9-fold in large pore size foam-treated wounds (p < 0.05) compared with wounds treated with an occlusive dressing. All polyurethane foams increased the number of myofibroblasts over occlusive dressing, with maximal presence in large pore size foam-treated wounds compared with all other groups (p < 0.05). CONCLUSIONS: The pore size of the interface material of suction devices has a significant impact on the wound healing response. Larger pores increased wound surface strain, tissue growth, and transformation of contractile cells. Modification of the pore size is a powerful approach for meeting biological needs of specific wounds.
Resumo:
The PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. While all three receptors are undetectable in adult mouse interfollicular epidermis, PPARbeta expression and activity is strongly re-activated by inflammatory stimuli during epidermal injury. The pro-inflammatory cytokine TNFalpha (tumour necrosis factor alpha) stimulates transcription of the PPARbeta gene via an activator protein-1 site in its promoter and it also triggers the production of PPARbeta ligands in keratinocytes. This increase of PPARbeta activity in these cells up-regulates the expression of integrin-linked kinase and 3-phosphoinositide-dependent kinase-1, which phosphorylates protein kinase B-alpha (Akt1). The resulting increase in Akt1 activity suppresses apoptosis and ensures the presence of a sufficient number of viable keratinocytes at the wound margin for re-epithelialization. Together, these observations reveal that PPARbeta takes on multiple roles and contributes favourably to the process of wound closure.
Resumo:
Skin morphogenesis, maintenance, and healing after wounding require complex epithelial-mesenchymal interactions. In this study, we show that for skin homeostasis, interleukin-1 (IL-1) produced by keratinocytes activates peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) expression in underlying fibroblasts, which in turn inhibits the mitotic activity of keratinocytes via inhibition of the IL-1 signaling pathway. In fact, PPARbeta/delta stimulates production of the secreted IL-1 receptor antagonist, which leads to an autocrine decrease in IL-1 signaling pathways and consequently decreases production of secreted mitogenic factors by the fibroblasts. This fibroblast PPARbeta/delta regulation of the IL-1 signaling is required for proper wound healing and can regulate tumor as well as normal human keratinocyte cell proliferation. Together, these findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated via PPARbeta/delta regulation in dermal fibroblasts of IL-1 signaling. Given the ubiquitous expression of PPARbeta/delta, other epithelial-mesenchymal interactions may also be regulated in a similar manner.
Resumo:
PPARalpha and PPARbeta are expressed in the mouse epidermis during fetal development, but their expression progressively disappears after birth. However, the expression of PPARbeta is reactivated in adult mice upon proliferative stimuli, such as cutaneous injury. We show here that PPARbeta protects keratinocytes from growth factor deprivation, anoikis and TNF-alpha-induced apoptosis, by modulating both early and late apoptotic events via the Akt1 signaling pathway and DNA fragmentation, respectively. The control mechanisms involve direct transcriptional upregulation of ILK, PDK1, and ICAD-L. In accordance with the anti-apoptotic role of PPARbeta observed in vitro, the balance between proliferation and apoptosis is altered in the epidermis of wounded PPARbeta mutant mice, with increased keratinocyte proliferation and apoptosis. In addition, primary keratinocytes deleted for PPARbeta show defects in both cell-matrix and cell-cell contacts, and impaired cell migration. Together, these results suggest that the delayed wound closure observed in PPARbeta mutant mice involves the alteration of several key processes. Finally, comparison of PPARbeta and Akt1 knock-out mice reveals many similarities, and suggests that the ability of PPARbeta to modulate the Akt1 pathway has significant impact during skin wound healing.
Resumo:
Au regard des agressions environnementales constantes que la peau doit endurer, l'équilibre fragile entre l'expression et la répression des gènes épidermiques, nécessaire à la différentiation et la prolifération des kératinocytes, pourrait facilement être perturbé en l'absence des mécanismes de stabilisation robustes. La présence d'un système neuroendocrinien local est donc importante afin de coordonner une réponse aux éventuelles irritations. En effet, l'expression de plusieurs neurohormones, des neurotransmetteurs et des neuropeptides, y compris des dérivés pro-opiomélanocortine comme la ß-endorphine et [Met5]-enképhaline, ainsi que l'expression du récepteur 8-opioïde (DOR) a été démontré dans la peau. Cependant, les mécanismes moléculaires par lesquels ils modulent la fonction des kératinocytes sont mal connus. Le présent travail démontre que la voie de signalisation DOR active spécifiquement la voie ERK 1/2 MAPK dans les lignées cellulaires de kératinocytes humains, inhibant la prolifération des cellules et entraîne une diminution de l'épaisseur épidermique dans un modèle organotypique de peau. De plus, l'expression de DOR retarde nettement l'induction de la kératine 10 (KRT 10) et la kératine 1 (KRT 1) dans une modèle 2D de différentiation in vitro, et supprime l'induction de KRT 10 dans un modèle organotypique de peau. Ceci est accompagné de la dérégulation de l'involucrine (IVL), la loricrine (LOR) et la fïlaggrin (FLG), résultant en une induction nettement réduite de leur expression lors de l'initiation de la différentiation in vitro. De plus, POU2F3 a été identifié comme un facteur de transcription régulant les gènes de différentiation des kératinocytes modulés par DOR. Il a été démontré que la régulation négative de POU2F3 via la voie DOR-ERK affecte les principaux aspects de la fonction des kératinocytes. Toutefois, il est évident que des facteurs supplémentaires influencent la fonctionnalité de la voie DOR elle-même. Le calcium et le contact cellule-cellule augmentent la quantité des récepteurs à la surface cellulaire des kératinocytes. Les kératinocytes dont les récepteurs sont internalisés ne répondent pas de la même manière que ceux possédant des récepteurs fonctionnels localisée à la membrane. Ce travail suggère que lors de signaux intrinsèques ou extrinsèques spécifiques, les kératinocytes sont capable de répondre via le système opioïdergique neuro-epidermique. Cette réponse doit être spatialement et temporairement contrôlée afin d'éviter un déséquilibre de l'homéostasie épidermique et un retard de cicatrisation. La compréhension de ce processus très complexe pourrait permettre à terme le développement de meilleurs traitements des affections cutanées pathologiques. En complément des études précédentes sur des souris DOR-défïcientes, ces données suggèrent que l'activation de DOR dans les kératinocytes humains influence la morphogenèse et l'homéostasie de l'épiderme, et pourrait jouer un rôle lors du processus de cicatrisation. - In view of the constant environmental assaults that the skin must endure, the delicate balance of an eloquent sequence of epidermal gene expression and repression, that is required for appropriate differentiation and proliferation of keratinocytes, might easily become derailed in the absence of robust stabilizing mechanisms. The presence of a local neuroendocrine system is thereby important to coordinate a response towards irritations. In fact, the expression of several neurohormones, neurotransmitters, and neuropeptides, including proopiomelanocortin derivatives, such as ß- endorphin and [Met5]-enkephalin has been shown in skin, as well as expression of the 6-opioid receptor (DOR). However, there is currently a lack of understanding of the molecular mechanisms by which their signalling modulates keratinocyte function. The present work demonstrates that DOR signalling specifically activates the ERK 1/2 MAPK pathway in human keratinocyte cell lines. This activation inhibits cell proliferation, resulting in decreased epidermal thickness in an organotypic skin model. Furthermore, DOR expression markedly delays induction of keratin intermediate filament Keratin 10 (KRT 10) and KRT 1 during in vitro differentiation, and abolishes the induction of KRT 10 in the organotypic skin model. This is accompanied by deregulation of involucrin (IVL), loricrin (LOR), and filaggrin (FLG), illustrated by a markedly reduced induction of their expression upon initiation of differentiation in vitro. Additionally, POU2F3 was identified as a transcription factor mediating the DOR induced regulation of keratinocyte differentiation related genes. It was revealed that DOR-mediated ERK-dependent downregulation of this factor affects key aspects of keratinocyte function. However, it is evident that additional triggers influence the functionality of the DOR itself. Calcium at concentrations above 0.1 mM and cell-cell contact both enhance the presence of receptor molecules on the keratinocytes cell surface. Keratinocytes with internalized receptor do not respond to DOR ligands in the same way as keratinocytes with a functional membrane localized receptor.