890 resultados para wet peroxide oxidation
Resumo:
In this regard Schiff base complexes have attracted wide attention. Furthermore, such complexes are found to play important role in analytical chemistry, organic synthesis, metallurgy, refining of metals, electroplating and photography. Many Schiff base complexes are reported in literature. Their properties depend on the nature of the metal ion as well as on the nature of the ligand. By altering the ligands it is possible to obtain desired electronic environment around the metal ion. Thus there is a continuing interest in the synthesis of simple and zeolite encapsulated Schiff base complexes of metal ions. Zeolites have a number of striking structural similarities to the protein portion of natural enzymes. Zeolite based catalysts are known for their remarkable ability of mimicking the chemistry of biological systems. In view of the importance of catalysts in all the areas of modern chemical industries, an effort has been made to synthesize some simple Schiff base complexes, heterogenize them by encapsulating within the supercages of zeoliteY cavities and to study their applications. The thesis deals with studies on the synthesis and characterization of some simple and zeoliteY encapsulated Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes and on the catalytic activity of these complexes on some oxidation reactions. Simple complexes were prepared from the Schiff base ligands SBT derived from 2-aminobenzothiazole and salicylaldehyde and the ligand VBT derived from 2-aminobenzothiazole and vanillin (4-hydroxy-3- methoxybenzaldehyde). ZeoliteY encapsulated Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes of Schiff base ligands SBT and VBT and also of 2-aminobenzothiazole were synthesized. All the prepared complexes were characterized using the physico-chemical techniques such as chemical analysis (employing AAS and CHN analyses), magnetic moment studies, conductance measurements and electronic and FTIR spectra. EPR spectra of the Cu(II) complexes were also carried out to know the probable structures and nature of Cu(II) complexes. Thermogravimetric analyses were carried out to obtain the information regarding the thermal stability of various complexes. The successful encapsulations of the complexes within the cavities of zeoliteY were ascertained by XRD, surface area and pore volume analysis. Assignments of geometries of simple and zeoliteY encapsulated complexes are given in all the cases. Both simple and zeoliteY encapsulated complexes were screened for catalytic activity towards oxidation reactions such as decomposition of hydrogen peroxide, oxidation of benzaldehyde, benzyl alcohol, 1-propanol, 2-propanol and cyclohexanol.
Resumo:
The aim of this study was to evaluate in vitro the effect of different in-office bleaching systems on the surface morphology of bovine dentin. Thirty tooth fragments measuring 4 x 4mm, containing enamel and dentin, were obtained from the crowns of extracted bovine incisors. Samples were subjected to simulated intracoronal bleaching techniques using conventional (Opalescence Endo (R) and Whiteness Super Endo (R)) and light-activated systems (Opalescence Xtra (R) and Whiteness HP Maxx (R)). Controls were treated with either sodium perborate mixed with 10% hydrogen peroxide or no bleaching agent. The samples were observed under SEM and the recorded images were evaluated for topographic alterations. The ultrastructural alterations of dentin observed in this study varied greatly between groups according to the products used. Higher pH products (Whiteness HP Maxx (R) and Opalescence Xtra (R)) associated with in-office techniques yielded better maintenance of dentin ultrastructure. Apparently, both low pH and hydrogen peroxide oxidation play a role in altering the ultrastructure of dentin during internal dental bleaching. The use of alkaline products with reduced time of application (in-office techniques) may decrease such morphological alterations.
Resumo:
The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation.
Resumo:
Iodine speciation analysis was carried out upon seawater samples collected in July 1993 at the DYFAMED station (43 °25?N, 7 °52?E) located in the northwestern Mediterranean Sea. Dissolved iodate and iodide were directly determined by differential pulse polarography and cathodic stripping square wave voltammetry, respectively, and organically bound iodine was estimated by wet-chemical oxidation with sodium hypochlorite. Iodate is the predominant species ranging from 416 nM in surface waters to 480 nM in bottom waters. Iodide is present in significant concentrations up to 60 nM in surface waters, undetectable between 500 and 1000 m depth and present in very low but measurable concentrations (about 6 nM) in deep waters. The vertical profile of total free iodine demonstrates observable removal from surface waters, slight enrichment at about 200 m depth and constant there below. Up to 40 nM of organically bound iodine has been estimated between 20 to 30 m. Factorial analysis of different iodine species with biologically relevant parameters provided strong evidence for iodine biophilic features.
Resumo:
Tämän työn tarkoituksena oli tutkia lämpötilan pH:n ja vetyperoksidin vaikutusta kuorimoveden haihdutuskonsentraatin märkähapetuksessa. Kirjallisuusosassa esitellään massan ja paperin valmistusta sekä kuorintaprosessi. Lisäksi tarkastellaan kuoren kemiallista koostumusta, jäteveden ja prosessiveden käsittelymenetelmiä sekä märkähapetuksen periaatteita. Kokeellinen osa käsittää erään suomalaisen paperitehtaan kuorimoveden haihdutuskonsentraatin märkähapetuskokeet. Hapetuskokeet tehtiin useammassa eri lämpötilassa, pH:ssa ja vetyperoksidikonsentraatiossa. Em. muuttujien vaikutusta tutkittiin kemialliseen hapenkulutukseen (COD), biologiseen hapenkulutukseen (BOD), välittömästi saatavana olevan biologiseen hapenkulutukseen (IABOD), orgaaniseen kokonaishiileen (TOC) ja tanniini/ligniini pitoisuuteen. Koetulokset osoittivat, että korkeimmat COD- ja TOC-reduktiot saavutettiin H2O2-katalysoidulla märkähapetuksella jäteveden alkuperäisessä pH:ssa (60 % reduktio COD:lla ja 45 % reduktio TOC:lla lämpötilassa 170 °C ja 0.2 g H2O2/g COD). Toisaalta, parhaat tulokset biohajoavuuden paranemisen suhteen saavutettiin emäksisissä olosuhteissa, jossa 170 °C:ssa saavutettiin BOD/COD-arvo 76 %. Emäksisissä olosuhteissa saavutettiin lähes täydellinen tanniinin reduktio lämpötila-alueella 130-170 °C, mutta näissä lämpötiloissa orgaanisen kuorman alenemista ei havaittu.
Resumo:
A heterogeneous copper catalyst supported on mesoporous MCM-41 was developed. The parent MCM-41 has a large pore area of over 1400 m(2)/g. Copper was chosen as the active element of catalyst and loaded into MCM-41 by adsorption at ambient temperature. The prepared catalysts were evaluated in the catalytic wet oxidation of phenol solution with an initial concentration of 1,300 ppm at 150 and 200 degreesC. The catalyst was found to be of high catalytic activity. It is also shown that the catalyst with a higher copper loading exhibits higher ability of accelerating the catalytic reaction to certain extent but reaches its constant level afterwards. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Heterogeneous copper catalyst was developed using the mesoporous molecular sieve MCM-41 as the catalyst support. Copper was impregnated onto the support. Catalysts with different copper loadings were obtained. The performance of the developed catalysts was evaluated in photochemically enhanced oxidation of phenol using hydrogen peroxide as the oxidant. The catalyst was found to significantly increase the oxidation rate and enhance the removal level of phenol with UV light present. The effects of copper loading on the catalyst, photo (UV), H2O2 concentration, and catalyst dosage on the photo-oxidation of phenol were studied. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The hydrotris(pyrazol-1-yl)methane iron(II) complex [FeCl2{eta(3)-HC(pz)(3)}] (Fe, pz = pyrazol-1-yl) immobilized on commercial (MOR) or desilicated (MOR-D) zeolite, catalyses the oxidation of cyclohexane with hydrogen peroxide to cyclohexanol and cyclohexanone, under mild conditions. MOR-D/Fe (desilicated zeolite supported [FeCl2{eta(3)-HC(pz)(3)}] complex) provides an outstanding catalytic activity (TON up to 2.90 x 10(3)) with the concomitant overall yield of 38%, and can be easy recovered and reused. The MOR or MOR-D supported hydrotris(pyrazol-1-yl)methane iron(II) complex (MOR/Fe and MOR-D/Fe, respectively) was characterized by X-ray powder diffraction, ICP-AES, and TEM studies as well as by IR spectroscopy and N-2 adsorption at -196 degrees C. The catalytic operational conditions (e.g., reaction time, type and amount of oxidant, presence of acid and type of solvent) were optimized. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The catalytic peroxidative oxidation (with H2O2) of cyclohexane in an ionic liquid (IL) using the tetracopper(II) complex [(CuL)2(μ4-O,O′,O′′,O′′′-CDC)]2·2H2O [HL = 2-(2-pyridylmethyleneamino)benzenesulfonic acid, CDC = cyclohexane-1,4-dicarboxylate] as a catalyst is reported. Significant improvements on the catalytic performance, in terms of product yield (up to 36%), TON (up to 529), reaction time, selectivity towards cyclohexanone and easy recycling (negligible loss in activity after three consecutive runs), are observed using 1-butyl-3-methylimidazolium hexafluorophosphate as the chosen IL instead of a molecular organic solvent including the commonly used acetonitrile. The catalytic behaviors in the IL and in different molecular solvents are discussed.
Resumo:
The accumulation of aqueous pollutants is becoming a global problem. The search for suitable methods and/or combinations of water treatment processes is a task that can slow down and stop the process of water pollution. In this work, the method of wet oxidation was considered as an appropriate technique for the elimination of the impurities present in paper mill process waters. It has been shown that, when combined with traditional wastewater treatment processes, wet oxidation offers many advantages. The combination of coagulation and wet oxidation offers a new opportunity for the improvement of the quality of wastewater designated for discharge or recycling. First of all, the utilization of coagulated sludge via wet oxidation provides a conditioning process for the sludge, i.e. dewatering, which is rather difficult to carry out with untreated waste. Secondly, Fe2(SO4)3, which is employed earlier as a coagulant, transforms the conventional wet oxidation process into a catalytic one. The use of coagulation as the post-treatment for wet oxidation can offer the possibility of the brown hue that usually accompanies the partial oxidation to be reduced. As a result, the supernatant is less colored and also contains a rather low amount of Fe ions to beconsidered for recycling inside mills. The thickened part that consists of metal ions is then recycled back to the wet oxidation system. It was also observed that wet oxidation is favorable for the degradation of pitch substances (LWEs) and lignin that are present in the process waters of paper mills. Rather low operating temperatures are needed for wet oxidation in order to destruct LWEs. The oxidation in the alkaline media provides not only the faster elimination of pitch and lignin but also significantly improves the biodegradable characteristics of wastewater that contains lignin and pitch substances. During the course of the kinetic studies, a model, which can predict the enhancements of the biodegradability of wastewater, was elaborated. The model includes lumped concentrations suchas the chemical oxygen demand and biochemical oxygen demand and reflects a generalized reaction network of oxidative transformations. Later developments incorporated a new lump, the immediately available biochemical oxygen demand, which increased the fidelity of the predictions made by the model. Since changes in biodegradability occur simultaneously with the destruction of LWEs, an attempt was made to combine these two facts for modeling purposes.
Resumo:
Työn tarkoituksena oli tutkia lämpötilan, paineen, pH:n ja katalyytin vaikutusta paperitehtaan TMP-konsentroidun prosessiveden märkähapetuksessa. Teoriaosio sisältää katsauksen sellu- ja paperiteollisuuteen, jätevesien käsittelyyn, nanosuodatuksen ja märkähapetusprosessin toimintaperiaatteet ja sovellukset hybriditeknologialle nanosuodatus-märkähapetuksessa. Empiirinen osa koostuu märkähapetuskokeista eri lämpötiloissa, paineissa, pH:ssa ja eri katalyyseillä. Työssä tutkittiin näiden vaikutusta kemialliseen hapenkulutukseen (COD), Biologiseen hapenkulutukseen (BOD), Välittömästi saatavana olevan biologisen hapenkulutukseen (IABOD), ligniiniin, täysin orgaanisen hiileen (TOC) ja rasvaliukoisten uuteaineiden (LWEs) pitoisuuteen. Tuloksina kokeellisesta työstä saatiin korkeimmat COD:n alenemat ja BOD/COD (biohajoavuus) suurimmilla lämpötilaolosuhteilla (COD:n alenema 70 % ja BOD/COD 97 % 200 °C:ssa ja hapen 10 bar osapaineella). Tutkimuksessa, jossa selvitettiin hapen osapaineen vaikutusta saatiin tuloksena, että hapen osapaineen kasvu parantaa orgaanisen kuormituksen poistoa: COD poisto oli olosuhteilla130°C, 5bar 5 %, olosuhteilla 130 °C, 15bar 15 %, olosuhteilla 170 °C, 5bar 20 % ja olosuhteilla 170 °C, 15bar 50 %. Lähes täydellinen LWEs –poisto saavutettiin 150 °C ja 10bar olosuhteilla, vaikka tässä lämpötilassa ei saavutettu korkeata orgaanisen kuormituksen poistoa. Emäksinen pH vaikutti suosivan hapettavia reaktioita, koska korkein COD:n poisto saavutettiin näissä olosuhteilla; kuitenkin alkalisen väliaineen tehokkuudelle löydettiin tärkeä lämpötilariippuvuus.
Resumo:
The objective of the research was to study the influence of temperature, oxygen pressure, catalysts loading and initial COD concentration of debarking wastewater on the pollutants during the catalytic oxidation. More importantly, how the addition of catalyst affects the wet oxidation process. The whole work was divided into two main sections, theoretical and experimental parts. The theoretical part reviews the pulp and paper industry from wood processing to paper production as well as operations that generate wastes. Treatment methods applicable for industrial pulp and paper mill effluents were also discussed. Wet oxidation and catalytic wet oxidation processes including mechanism, reactions, kinetics and industrial applications were previewed. In the experimental part, catalytic wet oxidation process were studied at 120-180°C, 0-10 bar oxygen pressure, 0-1 g/L catalyst concentration and 1000-3000 mg/L initial COD concentration. Responses, such as Chemical oxygen demand (COD), Total organic carbon (TOC), colour, lignin/tannin, Biochemical oxygen demand (BOD) and pH were measured. In the experiment, the best conditions occurred at 180°C, 10 bar, l g/L catalyst concentration and 3000mg/L initial COD. At these conditions; 74% COD, 97% lignin/tannin, 54% TOC, 90% colour were removed from the wastewater. pH was greatly reduced from 7 to 4.6. Lignin/tannin was removed most. Lignin/tannin showed linear dependency with colour during oxidation. Temperature made the most impact in reducing contaminants in debarked wastewater.
Resumo:
This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H2O2, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy.
Resumo:
Hydrogen peroxide has been used for decades in developed countries as an oxidizing agent in the treatment of water, domestic sewage and industrial effluents. This study evaluated the influence of the concentration of H2O2 and pH on the inactivation of Escherichia coli cells and the disinfection of sewage treated. The results showed that the inactivation rate increased with pH and H2O2. The presence of other contaminants dissolved in the effluent is probably the cause of these differences, because E. coli inactivation in synthetic wastewater was found to be much faster than in the real treated domestic sewage.
Resumo:
The dissertation is based on four articles dealing with recalcitrant lignin water purification. Lignin, a complicated substance and recalcitrant to most treatment technologies, inhibits seriously pulp and paper industry waste management. Therefore, lignin is studied, using WO as a process method for its degradation. A special attention is paid to the improvement in biodegradability and the reduction of lignin content, since they have special importance for any following biological treatment. In most cases wet oxidation is not used as a complete ' mineralization method but as a pre treatment in order to eliminate toxic components and to reduce the high level of organics produced. The combination of wet oxidation with a biological treatment can be a good option due to its effectiveness and its relatively low technology cost. The literature part gives an overview of Advanced Oxidation Processes (AOPs). A hot oxidation process, wet oxidation (WO), is investigated in detail and is the AOP process used in the research. The background and main principles of wet oxidation, its industrial applications, the combination of wet oxidation with other water treatment technologies, principal reactions in WO, and key aspects of modelling and reaction kinetics are presented. There is also given a wood composition and lignin characterization (chemical composition, structure and origin), lignin containing waters, lignin degradation and reuse possibilities, and purification practices for lignin containing waters. The aim of the research was to investigate the effect of the operating conditions of WO, such as temperature, partial pressure of oxygen, pH and initial concentration of wastewater, on the efficiency, and to enhance the process and estimate optimal conditions for WO of recalcitrant lignin waters. Two different waters are studied (a lignin water model solution and debarking water from paper industry) to give as appropriate conditions as possible. Due to the great importance of re using and minimizing the residues of industries, further research is carried out using residual ash of an Estonian power plant as a catalyst in wet oxidation of lignin-containing water. Developing a kinetic model that includes in the prediction such parameters as TOC gives the opportunity to estimate the amount of emerging inorganic substances (degradation rate of waste) and not only the decrease of COD and BOD. The degradation target compound, lignin is included into the model through its COD value (CODligning). Such a kinetic model can be valuable in developing WO treatment processes for lignin containing waters, or other wastewaters containing one or more target compounds. In the first article, wet oxidation of "pure" lignin water was investigated as a model case with the aim of degrading lignin and enhancing water biodegradability. The experiments were performed at various temperatures (110 -190°C), partial oxygen pressures (0.5 -1.5 MPa) and pH (5, 9 and 12). The experiments showed that increasing the temperature notably improved the processes efficiency. 75% lignin reduction was detected at the lowest temperature tested and lignin removal improved to 100% at 190°C. The effect of temperature on the COD removal rate was lower, but clearly detectable. 53% of organics were oxidized at 190°C. The effect of pH occurred mostly on lignin removal. Increasing the pH enhanced the lignin removal efficiency from 60% to nearly 100%. A good biodegradability ratio (over 0.5) was generally achieved. The aim of the second article was to develop a mathematical model for "pure" lignin wet oxidation using lumped characteristics of water (COD, BOD, TOC) and lignin concentration. The model agreed well with the experimental data (R2 = 0.93 at pH 5 and 12) and concentration changes during wet oxidation followed adequately the experimental results. The model also showed correctly the trend of biodegradability (BOD/COD) changes. In the third article, the purpose of the research was to estimate optimal conditions for wet oxidation (WO) of debarking water from the paper industry. The WO experiments were' performed at various temperatures, partial oxygen pressures and pH. The experiments showed that lignin degradation and organics removal are affected remarkably by temperature and pH. 78-97% lignin reduction was detected at different WO conditions. Initial pH 12 caused faster removal of tannins/lignin content; but initial pH 5 was more effective for removal of total organics, represented by COD and TOC. Most of the decrease in organic substances concentrations occurred in the first 60 minutes. The aim of the fourth article was to compare the behaviour of two reaction kinetic models, based on experiments of wet oxidation of industrial debarking water under different conditions. The simpler model took into account only the changes in COD, BOD and TOC; the advanced model was similar to the model used in the second article. Comparing the results of the models, the second model was found to be more suitable for describing the kinetics of wet oxidation of debarking water. The significance of the reactions involved was compared on the basis of the model: for instance, lignin degraded first to other chemically oxidizable compounds rather than directly to biodegradable products. Catalytic wet oxidation of lignin containing waters is briefly presented at the end of the dissertation. Two completely different catalysts were used: a commercial Pt catalyst and waste power plant ash. CWO showed good performance using 1 g/L of residual ash gave lignin removal of 86% and COD removal of 39% at 150°C (a lower temperature and pressure than with WO). It was noted that the ash catalyst caused a remarkable removal rate for lignin degradation already during the pre heating for `zero' time, 58% of lignin was degraded. In general, wet oxidation is not recommended for use as a complete mineralization method, but as a pre treatment phase to eliminate toxic or difficultly biodegradable components and to reduce the high level of organics. Biological treatment is an appropriate post treatment method since easily biodegradable organic matter remains after the WO process. The combination of wet oxidation with subsequent biological treatment can be an effective option for the treatment of lignin containing waters.