954 resultados para weighted PageRank
Resumo:
PURPOSE To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. METHODS We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. RESULTS We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. CONCLUSIONS We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain.
Resumo:
Pricing is an effective tool to control congestion and achieve quality of service (QoS) provisioning for multiple differentiated levels of service. In this paper, we consider the problem of pricing for congestion control in the case of a network of nodes under a single service class and multiple queues, and present a multi-layered pricing scheme. We propose an algorithm for finding the optimal state dependent price levels for individual queues, at each node. The pricing policy used depends on a weighted average queue length at each node. This helps in reducing frequent price variations and is in the spirit of the random early detection (RED) mechanism used in TCP/IP networks. We observe in our numerical results a considerable improvement in performance using our scheme over that of a recently proposed related scheme in terms of both throughput and delay performance. In particular, our approach exhibits a throughput improvement in the range of 34 to 69 percent in all cases studied (over all routes) over the above scheme.
Resumo:
This study considers the scheduling problem observed in the burn-in operation of semiconductor final testing, where jobs are associated with release times, due dates, processing times, sizes, and non-agreeable release times and due dates. The burn-in oven is modeled as a batch-processing machine which can process a batch of several jobs as long as the total sizes of the jobs do not exceed the machine capacity and the processing time of a batch is equal to the longest time among all the jobs in the batch. Due to the importance of on-time delivery in semiconductor manufacturing, the objective measure of this problem is to minimize total weighted tardiness. We have formulated the scheduling problem into an integer linear programming model and empirically show its computational intractability. Due to the computational intractability, we propose a few simple greedy heuristic algorithms and meta-heuristic algorithm, simulated annealing (SA). A series of computational experiments are conducted to evaluate the performance of the proposed heuristic algorithms in comparison with exact solution on various small-size problem instances and in comparison with estimated optimal solution on various real-life large size problem instances. The computational results show that the SA algorithm, with initial solution obtained using our own proposed greedy heuristic algorithm, consistently finds a robust solution in a reasonable amount of computation time.
Resumo:
The paper deals with a linearization technique in non-linear oscillations for systems which are governed by second-order non-linear ordinary differential equations. The method is based on approximation of the non-linear function by a linear function such that the error is least in the weighted mean square sense. The method has been applied to cubic, sine, hyperbolic sine, and odd polynomial types of non-linearities and the results obtained are more accurate than those given by existing linearization methods.
Resumo:
Reconstructions in optical tomography involve obtaining the images of absorption and reduced scattering coefficients. The integrated intensity data has greater sensitivity to absorption coefficient variations than scattering coefficient. However, the sensitivity of intensity data to scattering coefficient is not zero. We considered an object with two inhomogeneities (one in absorption and the other in scattering coefficient). The standard iterative reconstruction techniques produced results, which were plagued by cross talk, i.e., the absorption coefficient reconstruction has a false positive corresponding to the location of scattering inhomogeneity, and vice-versa. We present a method to remove cross talk in the reconstruction, by generating a weight matrix and weighting the update vector during the iteration. The weight matrix is created by the following method: we first perform a simple backprojection of the difference between the experimental and corresponding homogeneous intensity data. The built up image has greater weightage towards absorption inhomogeneity than the scattering inhomogeneity and its appropriate inverse is weighted towards the scattering inhomogeneity. These two weight matrices are used as multiplication factors in the update vectors, normalized backprojected image of difference intensity for absorption inhomogeneity and the inverse of the above for the scattering inhomogeneity, during the image reconstruction procedure. We demonstrate through numerical simulations, that cross-talk is fully eliminated through this modified reconstruction procedure.
Resumo:
Receive antenna selection (AS) reduces the hardware complexity of multi-antenna receivers by dynamically connecting an instantaneously best antenna element to the available radio frequency (RF) chain. Due to the hardware constraints, the channels at various antenna elements have to be sounded sequentially to obtain estimates that are required for selecting the ``best'' antenna and for coherently demodulating data. Consequently, the channel state information at different antennas is outdated by different amounts. We show that, for this reason, simply selecting the antenna with the highest estimated channel gain is not optimum. Rather, the channel estimates of different antennas should be weighted differently, depending on the training scheme. We derive closed-form expressions for the symbol error probability (SEP) of AS for MPSK and MQAM in time-varying Rayleigh fading channels for arbitrary selection weights, and validate them with simulations. We then derive an explicit formula for the optimal selection weights that minimize the SEP. We find that when selection weights are not used, the SEP need not improve as the number of antenna elements increases, which is in contrast to the ideal channel estimation case. However, the optimal selection weights remedy this situation and significantly improve performance.
Resumo:
We propose to compress weighted graphs (networks), motivated by the observation that large networks of social, biological, or other relations can be complex to handle and visualize. In the process also known as graph simplication, nodes and (unweighted) edges are grouped to supernodes and superedges, respectively, to obtain a smaller graph. We propose models and algorithms for weighted graphs. The interpretation (i.e. decompression) of a compressed, weighted graph is that a pair of original nodes is connected by an edge if their supernodes are connected by one, and that the weight of an edge is approximated to be the weight of the superedge. The compression problem now consists of choosing supernodes, superedges, and superedge weights so that the approximation error is minimized while the amount of compression is maximized. In this paper, we formulate this task as the 'simple weighted graph compression problem'. We then propose a much wider class of tasks under the name of 'generalized weighted graph compression problem'. The generalized task extends the optimization to preserve longer-range connectivities between nodes, not just individual edge weights. We study the properties of these problems and propose a range of algorithms to solve them, with dierent balances between complexity and quality of the result. We evaluate the problems and algorithms experimentally on real networks. The results indicate that weighted graphs can be compressed efficiently with relatively little compression error.
Resumo:
We use parallel weighted finite-state transducers to implement a part-of-speech tagger, which obtains state-of-the-art accuracy when used to tag the Europarl corpora for Finnish, Swedish and English. Our system consists of a weighted lexicon and a guesser combined with a bigram model factored into two weighted transducers. We use both lemmas and tag sequences in the bigram model, which guarantees reliable bigram estimates.
Resumo:
In this paper we present simple methods for construction and evaluation of finite-state spell-checking tools using an existing finite-state lexical automaton, freely available finite-state tools and Internet corpora acquired from projects such as Wikipedia. As an example, we use a freely available open-source implementation of Finnish morphology, made with traditional finite-state morphology tools, and demonstrate rapid building of Northern Sámi and English spell checkers from tools and resources available from the Internet.
Resumo:
In this paper, we present the design and bit error performance analysis of weighted linear parallel interference cancellers (LPIC) for multicarrier (MC) DS-CDMA systems. We propose an LPIC scheme where we estimate (and cancel) the multiple access interference (MAI) based on the soft outputs on individual subcarriers, and the interference cancelled outputs on different subcarriers are combined to form the final decision statistic. We scale the MAI estimate on individual subcarriers by a weight before cancellation; these weights are so chosen to maximize the signal-to-interference ratios at the individual subcarrier outputs. For this weighted LPIC scheme, using an approach involving the characteristic function of the decision variable, we derive exact bit error rate (BER) expressions for different cancellation stages. Using the same approach, we also derive exact BER expressions for the matched filter (MF) and decorrelating detectors for the considered MC DS-CDMA system. We show that the proposed weighted LPIC scheme performs better than the MF detector and the conventional LPIC (where the weights are taken to be unity), and close to the decorrelating detector.
Resumo:
The effect of using a spatially smoothed forward-backward covariance matrix on the performance of weighted eigen-based state space methods/ESPRIT, and weighted MUSIC for direction-of-arrival (DOA) estimation is analyzed. Expressions for the mean-squared error in the estimates of the signal zeros and the DOA estimates, along with some general properties of the estimates and optimal weighting matrices, are derived. A key result is that optimally weighted MUSIC and weighted state-space methods/ESPRIT have identical asymptotic performance. Moreover, by properly choosing the number of subarrays, the performance of unweighted state space methods can be significantly improved. It is also shown that the mean-squared error in the DOA estimates is independent of the exact distribution of the source amplitudes. This results in a unified framework for dealing with DOA estimation using a uniformly spaced linear sensor array and the time series frequency estimation problems.