951 resultados para wavelength tuning


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semiconductor microlasers with an equilateral triangle resonator (ETR) are analyzed by rate equations with the mode lifetimes calculated by the finite-difference time-domain technique and the Pade approximation. A gain spectrum based on the relation of the gain spectrum and the spontaneous emission spectrum is proposed for considering the mode selection in a wide wavelength span. For an ETR microlaser with the side length of about 5 mum, we find that single fundamental mode operation at about 1.55 mum can be obtained as the side length increases from 4.75 to 5.05 mum. The corresponding wavelength tuning range is 93 nm, and the threshold current is about 0.1 to 0.4 mA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Broadband grating-coupled external cavity laser, based on InAs/GaAs quantum dots, is achieved. The device has a wavelength tuning range from 1141.6 nm to 1251.7 nm under a low continuous-wave injection current density (458 A/cm(2)). The tunable bandwidth covers consecutively the light emissions from both the ground state and the 1st excited state of quantum dots. The effects of cavity length and antireflection facet coating on device performance are studied. It is shown that antireflection facet coating expands the tuning bandwidth up to similar to 150 nm, accompanied by an evident increase in threshold current density, which is attributed to the reduced interaction between the light field and the quantum dots in the active region of the device.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DFB lasers with continuously and arbitrarily chirped gratings of ultrahigh spatial precision are implemented by a method we proposed recently, using bent waveguides on homogeneous grating fields. Choosing individual bending functions we generate special chirping functions and obtain additional degrees of freedom to tailor and improve specific device performances, We present two applications for lasers showing several improved device properties and the effectiveness of our method, First, we implement continuously distributed phase-shifted lasers, revealing a considerably reduced photon pile-up, higher single-longitudinal mode stability, higher output power, lower linewidth, and higher yield than conventional abruptly phase-shifted lasers, Second, a novel tuning principle is applied in chirped multiple-section DFB lasers, showing 5.5-nm wavelength tuning, without any gaps, maintaining high side-mode suppression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have implemented and studied a new type of tunable multiple-section semiconductor distributed feedback (DFB) laser using tailored chirped DFB gratings. Arbitrarily and continuously chirped DFB gratings are defined by bent waveguides on homogeneous grating fields with ultrahigh spatial precision, The mathematical bending functions are optimized in this case to provide enlarged wavelength tuning ranges. We present the results of model calculations, the technological device realization and experimental results of the DFB laser characterization e.g. a tuning range of 5.5 mm without wavelength gaps and high side mode suppression ratio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an SG-DBR with a monolithically integrated SOA fabricated using quantum-well intermixing (QWI) for the first time in mainland China. The wavelength tuning range covers 33nm and the output power reaches 10mW with an SOA current of 50mA. The device can work at available channels with SMSR over 35dB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An integratable distributed Bragg reflector laser is fabricated by low-energy ion implantation induced quantum well intermixing. A 4.6nm quasi-continuous wavelength tuning range is achieved by controlling phase current and grating current simultaneously,and side mode suppression ratio maintains over 30dB throughout the tuning range except a few mode jump points.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laser engineering is an area in which developments in the existing design concepts and technology appear at an alarming rate. Now—a-days, emphasis has shifted from innovation to cost reduction and system improvement. To a major extent, these studies are aimed at attaining larger power densities, higher system efficiency and identification of new lasing media and new lasing wavelengths. Todate researchers have put to use all the ditferent Forms of matter as lasing material. Laser action was observed For the first time in a gaseous system - the He-Ne system. This was Followed by a variety of solidstate and gas laser systems. Uarious organic dyes dissolved in suitable solvents were found to lase when pumped optically. Broad band emission characteristics of these dye molecules made wavelength tuning possible using optical devices. Laser action was also observed in certain p-n junctions of semiconductor materials and some of these systems are also tunable. The recent addition to this list was the observation of laser action from certain laser produced plasmas. The purpose of this investigation was to examine the design and Fabrication techniques of pulsed Nitrogen lasers and high power Nd: Glass laserso Attempt was also made to put the systems developed into certain related experiments

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis concerns with the main aspects of medical trace molecules detection by means of intracavity laser absorption spectroscopy (ICLAS), namely with the equirements for highly sensitive, highly selective, low price, and compact size sensor. A novel two modes semiconductor laser sensor is demonstrated. Its operation principle is based on the competition between these two modes. The sensor sensitivity is improved when the sample is placed inside the two modes laser cavity, and the competition between the two modes exists. The effects of the mode competition in ICLAS are discussed theoretically and experimentally. The sensor selectivity is enhanced using external cavity diode laser (ECDL) configuration, where the tuning range only depends on the external cavity configuration. In order to considerably reduce the sensor cost, relative intensity noise (RIN) is chosen for monitoring the intensity ratio of the two modes. RIN is found to be an excellent indicator for the two modes intensity ratio variations which strongly supports the sensor methodology. On the other hand, it has been found that, wavelength tuning has no effect on the RIN spectrum which is very beneficial for the proposed detection principle. In order to use the sensor for medical applications, the absorption line of an anesthetic sample, propofol, is measured. Propofol has been dissolved in various solvents. RIN has been chosen to monitor the sensor response. From the measured spectra, the sensor sensitivity enhancement factor is found to be of the order of 10^(3) times of the conventional laser spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Resonanzionisations-Massenspektrometrie (RIMS) ist sowohl für spektroskopische Untersuchungen seltener Isotope als auch für den Ultraspurennachweis langlebiger radioaktiver Elemente einsetzbar. Durch die mehrstufige resonante Anregung atomarer Energieniveaus mit anschließender Ionisation mit Laserlicht wird eine sehr hohe Elementselektivität und Ionisationseffizienz erreicht. Der nachfolgende massenselektive Ionennachweis liefert eine gute Isotopenselektivität zusammen mit einer effektiven Untergrundunterdrückung. Ein wichtiger Bestandteil der RIMS-Apparatur ist ein zuverlässig arbeitendes, leistungsstarkes Lasersystem für die Resonanzionisation. Im Rahmen dieser Arbeit wurde ein von einem hochrepetierenden Nd:YAG-Laser gepumptes, aus drei Titan-Saphir-Lasern bestehendes System fertig aufgebaut und in den Routinebetrieb überführt. Die Titan-Saphir-Laser liefern im Durchstimmbereich von 730 - 880 nm eine mittlere Leistung von bis zu 3 W pro Laser bei einer Linienbreite von 2 - 3 GHz. Sie lassen sich computergesteuert in ihren Wellenlängen durchstimmen. Die mittels Resonanzionisation erzeugten Ionen werden dann in einem Flugzeit-Massenspektrometer entsprechend ihrer Masse aufgetrennt und mit einem Kanalplattendetektor nachgewiesen.Als Voraussetzung für die isotopenselektive Ultraspurenanalyse von Plutonium wurden mit diesem Lasersystem die Isotopieverschiebungen eines effizienten, dreistufigen Anregungsschema für Plutonium bestimmt. Die Laserleistungen reichen zur vielfachen Sättigung der ersten beiden Anregungsschritte und zur zweifachen Sättigung des dritten Anregungsschritts aus.Außerdem wurden die Ionisationsenergien von Pu-239 und Pu-244 zur Untersuchung ihrer Isotopenabhängigkeit bestimmt. Die beiden Ionisationsenergien sind im Rahmen der erreichten Genauigkeit bei einem Meßwert von IP239-IP244 = 0,24(82) cm^-1 gleich.Die Nachweiseffizienz der RIMS-Apparatur für Plutonium wurde in Effizienzmessungen zu 10^-5 bestimmt. Durch die gute Untergrundunterdrückung ergab sich daraus eine Nachweisgrenze von 10^6 Atomen bei der Messung eines Plutoniumisotops. Die Bestimmung der Isotopenverhältnisse von Proben mit einer zertifizierten Isotopenzusammensetzung lieferte eine gute Übereinstimmung der Meßwerte mit den angegebenen Zusammensetzungen.Die RIMS-Apparatur wurde zur Bestimmung des Gehalts und der Isotopenzusammensetzung von Plutonium in Meerwasser- und Staubproben eingesetzt.Auf Grund der Isotopenzusammensetzung konnte gezeigt werden, daß das Plutonium bei den meisten Proben aus dem Fallout von oberirdischen Kernwaffentests stammte. Des weiteren wurde Plutonium in Urinproben bestimmt. Die Nachweisgrenzen lagen bei diesen Umweltproben bei 10^6 bis 10^7 Atomen Plutonium und damit um zwei Größenordnungen niedriger als die Nachweisgrenze für Pu-239 bei der alpha-Spektroskopie, der Standardmethode für den Plutoniumnachweis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BODIPY (4,4-Difluoro-3a,4a-diaza-s-indacene) dyes have gained lots of attention in application of fluorescence sensing and imaging in recent years because they possess many distinctive and desirable properties such as high extinction coefficient, narrow absorption and emission bands, high quantum yield and low photobleaching effect. However, most of BODIPY-based fluorescent probes have very poor solubilities in aqueous solution, emit less than 650 nm fluorescence that can cause cell and tissue photodamages compared with bio-desirable near infrared (650-900 nm) light. These undesirable properties extremely limit the applications of BODIPY-based fluorescent probes in sensing and imaging applications. In order to overcome these drawbacks, we have developed a very effective strategy to prepare a series of neutral highly water- soluble BODIPY dyes by enhancing the water solubilities of BODIPY dyes via incorporation of tri(ethylene glycol)methyl ether (TEG) and branched oligo(ethylene glycol)methyl ether (BEG) residues onto BODIPY dyes at 1,7-, 2,6-, 3,5-, 4- and meso- positions. We also have effectively tuned absorptions and emissions of BOIDPY dyes to red, deep red and near infrared regions via significant extension of π-conjugation of BODIPY dyes by condensation reactions of aromatic aldehydes with 2,6-diformyl BODIPY dyes at 1,3,5,7-positions. Based on the foundation that we built for enhancing water solubility and tuning wavelength, we have designed and developed a series of water-soluble, BODIPY-based fluorescent probes for sensitive and selective sensing and imaging of cyanide, Zn (II) ions, lysosomal pH and cancer cells. We have developed three BODIPY-based fluorescent probes for sensing of cyanide ions by incorporating indolium moieties onto the 6-position of TEG- or BEG-modified BOIDPY dyes. Two of them are highly water-soluble. These fluorescent probes showed selective and fast ratiometric fluorescent responses to cyanide ions with a dramatic fluorescence color change from red to green accompanying a significant increase in fluorescent intensity. The detection limit was measured as 0.5 mM of cyanide ions. We also have prepared three highly water-soluble fluorescent probes for sensing of Zn (II) ions by introducing dipicoylamine (DPA, Zn ion chelator) onto 2- and/or 6-positions of BEG-modified BODIPY dyes. These probes showed selective and sensitive responses to Zn (II) ion in the range from 0.5 mM to 24 mM in aqueous solution at pH 7.0. Particularly, one of the probes displayed ratiometric responses to Zn (II) ions with fluorescence quenching at 661 nm and fluorescence enhancement at 521 nm. This probe has been successfully applied to the detection of intracellular Zn (II) ions inside the living cells. Then, we have further developed three acidotropic, near infrared emissive BODIPY- based fluorescent probes for detection of lysosomal pH by incorporating piperazine moiety at 3,5-positions of TEG- or BEG-modified BODIPY dyes as parts of conjugation. The probes have low auto-fluorescence at physiological neutral condition while their fluorescence intensities will significant increase at 715 nm when pH shift to acidic condition. These three probes have been successfully applied to the in vitro imaging of lysosomes inside two types of living cells. At the end, we have synthesized one water- soluble, near infrared emissive cancer cell targetable BODIPY-based fluorescent polymer bearing cancer homing peptide (cRGD) residues for cancer cell imaging applications. This polymer exhibited excellent water-solubility, near infrared emission (712 nm), good biocompatibility. It also showed low nonspecific interactions to normal endothelial cells and can effectively detect breast tumor cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents a detailed, experiment-based study of generation of ultrashort optical pulses from diode lasers. Simple and cost-effective techniques were used to generate high power, high quality optical short pulses at various wavelength windows. The major achievements presented in the thesis is summarised as follows. High power pulses generation is one of the major topics discussed in the thesis. Although gain switching is the simplest way for ultrashort pulse generation, it proves to be quite effective to deliver high energy pulses on condition that the pumping pulses with extremely fast rising time and high enough amplitude are applied on specially designed pulse generators. In the experiment on a grating-coupled surface emitting laser (GCSEL), peak power as high as 1W was achieved even when its spectral bandwidth was controlled within 0.2nm. Another experiment shows violet picosecond pulses with peak power as high as 7W was achieved when the intensive electrical pulses were applied on optimised DC bias to pump on InGaN violet diode laser. The physical mechanism of this phenomenon, as we considered, may attributed to the self-organised quantum dots structure in the laser. Control of pulse quality, including spectral quality and temporal profile, is an important issue for high power pulse generation. The ways to control pulse quality described in the thesis are also based on simple and effective techniques. For instance, GCSEL used in our experiment has a specially designed air-grating structure for out-coupling of optical signals; hence, a tiny flat aluminium mirror was placed closed to the grating section and resulted in a wavelength tuning range over 100nm and the best side band suppression ratio of 40dB. Self-seeding, as an effective technique for spectral control of pulsed lasers, was demonstrated for the first time in a violet diode laser. In addition, control of temporal profile of the pulse is demonstrated in an overdriven DFB laser. Wavelength tuneable fibre Bragg gratings were used to tailor the huge energy tail of the high power pulse. The whole system was compact and robust. The ultimate purpose of our study is to design a new family of compact ultrafast diode lasers. Some practical ideas of laser design based on gain-switched and Q-switched devices are also provided in the end.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gain-switched, single frequency operation of an external cavity grating-coupled surface emitting laser with a wavelength tuning range of 100 nm was presented. The light in the grating section was coupled out of the laser at a specific angle to the surface of the device. Analysis showed that within the driving current range, lasing in the device only occurred when the external cavity was properly aligned.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Widely tunable gain switching of a grating-coupled surface-emitting laser (GCSEL) has been demonstrated in a simple external cavity configuration for the first time. Pulse duration in range of 40-100ps and wavelength tuning over 100nm have been achieved. High power, tail-free optical pulses have been observed at 980nm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrated a room temperature, tuneable, external cavity Quantum Cascade Laser for the use in compact spectroscopic gas sensing system. Wavelength tuning of 85 nm between 3190 nm and 3275 nm was achieved at room temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A compact all-room-temperature frequency-doubling scheme generating cw orange light with a periodically poled potassium titanyl phosphate waveguide and a quantum-dot external cavity diode laser is demonstrated. A frequency-doubled power of up to 4.3 mW at the wavelength of 612.9 nm with a conversion efficiency exceeding 10% is reported. Second harmonic wavelength tuning between 612.9 nm and 616.3 nm by changing the temperature of the crystal is also demonstrated. © Springer-Verlag 2010.