979 resultados para watch glasses
Resumo:
At CoDaWork'03 we presented work on the analysis of archaeological glass composi-tional data. Such data typically consist of geochemical compositions involving 10-12variables and approximates completely compositional data if the main component, sil-ica, is included. We suggested that what has been termed `crude' principal componentanalysis (PCA) of standardized data often identi ed interpretable pattern in the datamore readily than analyses based on log-ratio transformed data (LRA). The funda-mental problem is that, in LRA, minor oxides with high relative variation, that maynot be structure carrying, can dominate an analysis and obscure pattern associatedwith variables present at higher absolute levels. We investigate this further using sub-compositional data relating to archaeological glasses found on Israeli sites. A simplemodel for glass-making is that it is based on a `recipe' consisting of two `ingredients',sand and a source of soda. Our analysis focuses on the sub-composition of componentsassociated with the sand source. A `crude' PCA of standardized data shows two clearcompositional groups that can be interpreted in terms of di erent recipes being used atdi erent periods, reected in absolute di erences in the composition. LRA analysis canbe undertaken either by normalizing the data or de ning a `residual'. In either case,after some `tuning', these groups are recovered. The results from the normalized LRAare di erently interpreted as showing that the source of sand used to make the glassdi ered. These results are complementary. One relates to the recipe used. The otherrelates to the composition (and presumed sources) of one of the ingredients. It seemsto be axiomatic in some expositions of LRA that statistical analysis of compositionaldata should focus on relative variation via the use of ratios. Our analysis suggests thatabsolute di erences can also be informative
Resumo:
[1] We present new analytical data of major and trace elements for the geological MPI-DING glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, GOR132-G, BM90/21-G, T1-G, and ATHO-G. Different analytical methods were used to obtain a large spectrum of major and trace element data, in particular, EPMA, SIMS, LA-ICPMS, and isotope dilution by TIMS and ICPMS. Altogether, more than 60 qualified geochemical laboratories worldwide contributed to the analyses, allowing us to present new reference and information values and their uncertainties ( at 95% confidence level) for up to 74 elements. We complied with the recommendations for the certification of geological reference materials by the International Association of Geoanalysts (IAG). The reference values were derived from the results of 16 independent techniques, including definitive ( isotope dilution) and comparative bulk ( e. g., INAA, ICPMS, SSMS) and microanalytical ( e. g., LA-ICPMS, SIMS, EPMA) methods. Agreement between two or more independent methods and the use of definitive methods provided traceability to the fullest extent possible. We also present new and recently published data for the isotopic compositions of H, B, Li, O, Ca, Sr, Nd, Hf, and Pb. The results were mainly obtained by high-precision bulk techniques, such as TIMS and MC-ICPMS. In addition, LA-ICPMS and SIMS isotope data of B, Li, and Pb are presented.
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: Caution: Watch What You Sign
Resumo:
We present an extensive study of the structural and optical emission properties in aluminum silicates and soda-lime silicates codoped with Si nanoclusters (Si-nc) and Er. Si excess of 5 and 15¿at.¿% and Er concentrations ranging from 2×1019 up to 6×1020¿cm¿3 were introduced by ion implantation. Thermal treatments at different temperatures were carried out before and after Er implantation. Structural characterization of the resulting structures was performed to obtain the layer composition and the size distribution of Si clusters. A comprehensive study has been carried out of the light emission as a function of the matrix characteristics, Si and Er contents, excitation wavelength, and power. Er emission at 1540¿nm has been detected in all coimplanted glasses, with similar intensities. We estimated lifetimes ranging from 2.5¿to¿12¿ms (depending on the Er dose and Si excess) and an effective excitation cross section of about 1×10¿17¿cm2 at low fluxes that decreases at high pump power. By quantifying the amount of Er ions excited through Si-nc we find a fraction of 10% of the total Er concentration. Upconversion coefficients of about 3×10¿18¿cm¿3¿s¿1 have been found for soda-lime glasses and one order of magnitude lower in aluminum silicates.
Resumo:
As in cancer biology, in wound healing there is a need for objective staging systems to decide for the best treatment and predictors of outcome. We developed in the diabetic (db/db) wound healing model, a staging system, the "wound watch," based on the quantification of angiogenesis and cell proliferation in open wounds. In chronic wounds, there is often a lack of cellular proliferation and angiogenesis that leads to impaired healing. The wound watch addresses this by quantifying the proliferative phase of wound healing in two dimensions (cellular division and angiogenesis). The results are plotted in a two-dimensional graph to monitor the course of healing and compare the response to different treatments.
Resumo:
We investigate chaotic, memory, and cooling rate effects in the three-dimensional Edwards-Anderson model by doing thermoremanent (TRM) and ac susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of reinitialization processes in temperature change experiments (TRM or ac). A detailed comparison with ac relaxation experiments in the presence of dc magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.
Resumo:
We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes relaxation processes in glasses in the mean-field approximation which are known to be characterized by the presence of an exponentially large number of metastable states. For systems evolving under identical but arbitrarily correlated noises, we demonstrate that there exists a critical temperature T0 which separates two different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit. This transition exists for generic noise correlations such that the zero damage solution is stable at high temperatures, being minimal for maximal noise correlations. Although this dynamical transition depends on the type of noise correlations, we show that the asymptotic damage has the good properties of a dynamical order parameter, such as (i) independence of the initial damage; (ii) independence of the class of initial condition; and (iii) stability of the transition in the presence of asymmetric interactions which violate detailed balance. For maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent number of saddle points (as well as metastable states) in the thermodynamic limit consequence of the ruggedness of the free-energy landscape which characterizes the glassy state. These results are then compared to extensive numerical simulations of a mean-field glass model (the Bernasconi model) with Monte Carlo heat-bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage spreading an interesting tool to probe the ruggedness of the configurational landscape.
Resumo:
The reintroduction of the Iowa Department on Aging legislative and policy update, now known as “Aging Watch.” The Department is providing this update to better inform you about policy affecting older Iowans. In addition to policy updates from the statehouse and the nation’s capitol, you’ll learn about Department programs and changes affecting the landscape. As you’ll learn reading this and future editions, big changes are coming for the Iowa Aging Network. Over the next year the Department will be reducing the number of local Area Agencies on Aging, as required by legislative action. Not surprisingly, this is a major change for everyone.
Resumo:
The reintroduction of the Iowa Department on Aging legislative and policy update, now known as “Aging Watch.” The Department is providing this update to better inform you about policy affecting older Iowans. In addition to policy updates from the statehouse and the nation’s capitol, you’ll learn about Department programs and changes affecting the landscape. As you’ll learn reading this and future editions, big changes are coming for the Iowa Aging Network. Over the next year the Department will be reducing the number of local Area Agencies on Aging, as required by legislative action. Not surprisingly, this is a major change for everyone.
Resumo:
The reintroduction of the Iowa Department on Aging legislative and policy update, now known as “Aging Watch.” The Department is providing this update to better inform you about policy affecting older Iowans. In addition to policy updates from the statehouse and the nation’s capitol, you’ll learn about Department programs and changes affecting the landscape. As you’ll learn reading this and future editions, big changes are coming for the Iowa Aging Network. Over the next year the Department will be reducing the number of local Area Agencies on Aging, as required by legislative action. Not surprisingly, this is a major change for everyone.
Resumo:
The reintroduction of the Iowa Department on Aging legislative and policy update, now known as “Aging Watch.” The Department is providing this update to better inform you about policy affecting older Iowans. In addition to policy updates from the statehouse and the nation’s capitol, you’ll learn about Department programs and changes affecting the landscape. As you’ll learn reading this and future editions, big changes are coming for the Iowa Aging Network. Over the next year the Department will be reducing the number of local Area Agencies on Aging, as required by legislative action. Not surprisingly, this is a major change for everyone.