999 resultados para vortex dynamics
Resumo:
The dynamics of small repulsive Bose-Einstein condensed vortex states of 85Rb atoms in a cylindrical traps with low angular momentum was studied. The time-dependent mean-field Gross-Pitaevskii equation was used for the study. The condensates collapsed and atoms ejected via explosion and a remnant condensate with a smaller number of atoms emerges that survived for a long time.
Resumo:
The 3D flow around a circular cylinder free to oscillate transversely to the free stream was simulated using Computational Fluid Dynamics (CFD) and the Spalart-Allmaras Detached Eddy Simulation (DES) turbulence model for a Reynolds number Re = 10(4). Simulations were carried out for a small mass-damping parameter m*zeta = 0.00858, where m* = 3.3 and zeta = 0.0026. We found good agreement between the numerical results and experimental data. The simulations predicted the high observed amplitudes of the upper branch of vortex-induced vibrations for low mass-damping parameters.
Resumo:
In South America, yellow fever (YF) is an established infectious disease that has been identified outside of its traditional endemic areas, affecting human and nonhuman primate (NHP) populations. In the epidemics that occurred in Argentina between 2007-2009, several outbreaks affecting humans and howler monkeys (Alouatta spp) were reported, highlighting the importance of this disease in the context of conservation medicine and public health policies. Considering the lack of information about YF dynamics in New World NHP, our main goal was to apply modelling tools to better understand YF transmission dynamics among endangered brown howler monkey (Alouatta guariba clamitans) populations in northeastern Argentina. Two complementary modelling tools were used to evaluate brown howler population dynamics in the presence of the disease: Vortex, a stochastic demographic simulation model, and Outbreak, a stochastic disease epidemiology simulation. The baseline model of YF disease epidemiology predicted a very high probability of population decline over the next 100 years. We believe the modelling approach discussed here is a reasonable description of the disease and its effects on the howler monkey population and can be useful to support evidence-based decision-making to guide actions at a regional level.
Resumo:
In this thesis an attempt is made to study vortex knots based on the work of Keener . It is seen that certain mistakes have been crept in to the details of this paper. We have chosen this study for an investigation as it is the first attempt to study vortex knots. Other works had given attention to this. In chapter 2 we have considered these corrections in detail. In chapter 3 we have tried a simple extension by introducing vorticity in the evolution of vortex knots. In chapter 4 we have introduced a stress tensor related to vorticity. Chapter 5 is the general conclusion.Knot theory is a branch of topology and has been developed as an independent branch of study. It has wide applications and vortex knot is one of them. As pointed out earlier, most of the studies in fluid dynamics exploits the analogy between vorticity and magnetic induction in the case of MHD. But vorticity is more general than magnetic induction and so it is essential to discuss the special properties of vortex knots, independent of MHD flows. This is what is being done in this thesis.
Resumo:
Wind energy has emerged as a major sustainable source of energy.The efficiency of wind power generation by wind mills has improved a lot during the last three decades.There is still further scope for maximising the conversion of wind energy into mechanical energy.In this context,the wind turbine rotor dynamics has great significance.The present work aims at a comprehensive study of the Horizontal Axis Wind Turbine (HAWT) aerodynamics by numerically solving the fluid dynamic equations with the help of a finite-volume Navier-Stokes CFD solver.As a more general goal,the study aims at providing the capabilities of modern numerical techniques for the complex fluid dynamic problems of HAWT.The main purpose is hence to maximize the physics of power extraction by wind turbines.This research demonstrates the potential of an incompressible Navier-Stokes CFD method for the aerodynamic power performance analysis of horizontal axis wind turbine.The National Renewable Energy Laboratory USA-NREL (Technical Report NREL/Cp-500-28589) had carried out an experimental work aimed at the real time performance prediction of horizontal axis wind turbine.In addition to a comparison between the results reported by NREL made and CFD simulations,comparisons are made for the local flow angle at several stations ahead of the wind turbine blades.The comparison has shown that fairly good predictions can be made for pressure distribution and torque.Subsequently, the wind-field effects on the blade aerodynamics,as well as the blade/tower interaction,were investigated.The selected case corresponded to a 12.5 m/s up-wind HAWT at zero degree of yaw angle and a rotational speed of 25 rpm.The results obtained suggest that the present can cope well with the flows encountered around wind turbines.The areodynamic performance of the turbine and the flow details near and off the turbine blades and tower can be analysed using theses results.The aerodynamic performance of airfoils differs from one another.The performance mainly depends on co-efficient of performnace,co-efficient of lift,co-efficient of drag, velocity of fluid and angle of attack.This study shows that the velocity is not constant for all angles of attack of different airfoils.The performance parameters are calculated analytically and are compared with the standardized performance tests.For different angles of ,the velocity stall is determined for the better performance of a system with respect to velocity.The research addresses the effect of surface roughness factor on the blade surface at various sections.The numerical results were found to be in agreement with the experimental data.A relative advantage of the theoretical aerofoil design method is that it allows many different concepts to be explored economically.Such efforts are generally impractical in wind tunnels because of time and money constraints.Thus, the need for a theoretical aerofoil design method is threefold:first for the design of aerofoil that fall outside the range of applicability of existing calalogs:second,for the design of aerofoil that more exactly match the requirements of the intended application:and third,for the economic exploration of many aerofoil concepts.From the results obtained for the different aerofoils,the velocity is not constant for all angles of attack.The results obtained for the aerofoil mainly depend on angle of attack and velocity.The vortex generator technique was meticulously studies with the formulation of the specification for the right angle shaped vortex generators-VG.The results were validated in accordance with the primary analysis phase.The results were found to be in good agreement with the power curve.The introduction of correct size VGs at appropriate locations over the blades of the selected HAWT was found to increase the power generation by about 4%
Resumo:
An analytical dispersion relation is derived for linear perturbations to a Rankine vortex governed by surface quasi-geostrophic dynamics. Such a Rankine vortex is a circular region of uniform anomalous surface temperature evolving under quasi-geostrophic dynamics with uniform interior potential vorticity. The dispersion relation is analysed in detail and compared to the more familiar dispersion relation for a perturbed Rankine vortex governed by the Euler equations. The results are successfully verified against numerical simulations of the full equations. The dispersion relation is relevant to problems including wave propagation on surface temperature fronts and the stability of vortices in quasi-geostrophic turbulence.
Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere
Resumo:
The Northern Hemisphere stratospheric polar vortex is linked to surface weather. After Stratospheric Sudden Warmings in winter, the tropospheric circulation is often nudged towards the negative phase of the Northern Annular Mode (NAM) and the North Atlantic Oscillation (NAO). A strong stratospheric vortex is often associated with subsequent positive NAM/NAO conditions. For stratosphere–troposphere associations to be useful for forecasting purposes it is crucial that changes to the stratospheric vortex can be understood and predicted. Recent studies have proposed that there exist tropospheric precursors to anomalous vortex events in the stratosphere and that these precursors may be understood by considering the relationship between stationary wave patterns and regional variability. Another important factor is the extent to which the inherent variability of the stratosphere in an atmospheric model influences its ability to simulate stratosphere–troposphere links. Here we examine the lower stratosphere variability in 300-year pre-industrial control integrations from 13 coupled climate models. We show that robust precursors to stratospheric polar vortex anomalies are evident across the multi-model ensemble. The most significant tropospheric component of these precursors consists of a height anomaly dipole across northern Eurasia and large anomalies in upward stationary wave fluxes in the lower stratosphere over the continent. The strength of the stratospheric variability in the models was found to depend on the variability of the upward stationary wave fluxes and the amplitude of the stationary waves.
Resumo:
A theory of available energy for axisymmetric circulations is presented. The theory is a generalization of the classical theory of available potential energy, in that it accounts for both thermal and angular momentum constraints on the circulation. The generalization relies on the Hamiltonian structure of the (conservative) dynamics, is exact at finite amplitude, and has a local form. Application of the theory is presented for the case of an axisymmetric vortex on an f -plane in the context of the Boussinesq equations.
Resumo:
The recovery of the Arctic polar vortex following stratospheric sudden warmings is found to take upward of 3 months in a particular subset of cases, termed here polar-night jet oscillation (PJO) events. The anomalous zonal-mean circulation above the pole during this recovery is characterized by a persistently warm lower stratosphere, and above this a cold midstratosphere and anomalously high stratopause, which descends as the event unfolds. Composites of these events in the Canadian Middle Atmosphere Model show the persistence of the lower-stratospheric anomaly is a result of strongly suppressed wave driving and weak radiative cooling at these heights. The upper-stratospheric and lower-mesospheric anomalies are driven immediately following the warming by anomalous planetary-scale eddies, following which, anomalous parameterized nonorographic and orographic gravity waves play an important role. These details are found to be robust for PJO events (as opposed to sudden warmings in general) in that many details of individual PJO events match the composite mean. Azonal-mean quasigeostrophic model on the sphere is shown to reproduce the response to the thermal and mechanical forcings produced during a PJO event. The former is well approximated by Newtonian cooling. The response can thus be considered as a transient approach to the steady-state, downward control limit. In this context, the time scale of the lower-stratospheric anomaly is determined by the transient, radiative response to the extended absence of wave driving. The extent to which the dynamics of the wave-driven descent of the stratopause can be considered analogous to the descending phases of the quasi-biennial oscillation (QBO) is also discussed.
Resumo:
A common bias among global climate models (GCMs) is that they exhibit tropospheric southern annular mode (SAM) variability that is much too persistent in the Southern Hemisphere (SH) summertime. This is of concern for the ability to accurately predict future SH circulation changes, so it is important that it be understood and alleviated. In this two-part study, specifically targeted experiments with the Canadian Middle Atmosphere Model (CMAM) are used to improve understanding of the enhanced summertime SAM persistence. Given the ubiquity of this bias among comprehensive GCMs, it is likely that the results will be relevant for other climate models. Here, in Part I, the influence of climatological circulation biases on SAM variability is assessed, with a particular focus on two common biases that could enhance summertime SAM persistence: the too-late breakdown of the Antarctic stratospheric vortex and the equatorward bias in the SH tropospheric midlatitude jet. Four simulations are used to investigate the role of each of these biases in CMAM. Nudging and bias correcting procedures are used to systematically remove zonal-mean stratospheric variability and/or remove climatological zonal wind biases. The SAM time-scale bias is not alleviated by improving either the timing of the stratospheric vortex breakdown or the climatological jet structure. Even in the absence of stratospheric variability and with an improved climatological circulation, the model time scales are biased long. This points toward a bias in internal tropospheric dynamics that is not caused by the tropospheric jet structure bias. The underlying cause of this is examined in more detail in Part II of this study.
Resumo:
The effect of spatial and temporal variations in the radiative damping rate on the response to an imposed forcing or diabatic heating is examined in a zonal-mean model of the middle atmosphere. Attention is restricted to the extratropics, where a linear approach is viable. It is found that regions with weak radiative damping rates are more sensitive in terms of temperature to the remote influence of the diabatic circulation. The delay in the response in such regions can mean that ‘downward’ control is not achieved on seasonal time-scales. A seasonal variation in the radiative damping rate modulates the evolution of the response and leaves a transient-like signature in the annual mean temperature field. Several idealized examples are considered, motivated by topical questions. It is found that wave drag outside the polar vortex can significantly affect the temperatures in its interior, so that high-latitude, high-altitude gravity-wave drag is not the only mechanism for warming the southern hemisphere polar vortex. Diabatic mass transport through the 100 hPa surface is found to lag the seasonal evolution of the wave drag that drives the transport, and thus cannot be considered to be in the downward control regime. On the other hand, the seasonal variation of the radiative damping rate is found to make only a weak contribution to the annual mean temperature increase that has been observed above the ozone hole. Copyright © 2002 Royal Meteorological Society.
Resumo:
The impact on the dynamics of the stratosphere of three approaches to geoengineering by solar radiation management is investigated using idealized simulations of a global climate model. The approaches are geoengineering with sulfate aerosols, titania aerosols, and reduction in total solar irradiance (representing mirrors placed in space). If it were possible to use stratospheric aerosols to counterbalance the surface warming produced by a quadrupling of atmospheric carbon dioxide concentrations, tropical lower stratospheric radiative heating would drive a thermal wind response which would intensify the stratospheric polar vortices. In the Northern Hemisphere this intensification results in strong dynamical cooling of the polar stratosphere. Northern Hemisphere stratospheric sudden warming events become rare (one and two in 65 years for sulfate and titania, respectively). The intensification of the polar vortices results in a poleward shift of the tropospheric midlatitude jets in winter. The aerosol radiative heating enhances the tropical upwelling in the lower stratosphere, influencing the strength of the Brewer-Dobson circulation. In contrast, solar dimming does not produce heating of the tropical lower stratosphere, and so there is little intensification of the polar vortex and no enhanced tropical upwelling. The dynamical response to titania aerosol is qualitatively similar to the response to sulfate.
Resumo:
In this work we investigate the dynamics of vortices in a square mesoscopic superconductor. As time evolves we show how the vortices are nucleated into the sample to form a multivortex, single vortex, and giant vortex states. We illustrate how the vortices move around at the transition fields before they accommodate into an equilibrium configuration. We also calculate the magnetization and the free energy as functions of the applied magnetic field for several values of temperature. In addition, we evaluate the upper critical field.
Resumo:
A numerical study of the time-dependent Gross-Pitaevskii equation for an axially symmetric trap to obtain insight into the free expansion of vortex states of BEC is presented. As such, the ratio of vortex-core radius to radia rms radius xc/xrms(<1) is found to play an interesting role in the free expansion of condensed vortex states. the larger this ratio, the more prominent is the vortex core and the easier is the possibility of experimental detection of vortex states.
Resumo:
Using the explicit numerical solution of the axially symmetric Gross-Pitaevskii equation we study the dynamics of interaction among vortex solitons in a rotating matter-wave bright soliton train in a radially trapped and axially free Bose-Einstein condensate to understand certain features of the experiment by Strecker et al (2002 Nature 417 150). In a soliton train, solitons of opposite phase (phase δ = π) repel and stay apart without changing shape; solitons with δ = 0 attract, interact and coalesce, but eventually come out; solitons with a general δ usually repel but interact inelastically by exchanging matter. We study this and suggest future experiments with vortex solitons.