992 resultados para urinary 2,5-hexanodione determination
Resumo:
Estudi comparatiu amb benchmark del rendiment en dues plataformes multicore multithreading de diferents modalitats de paral·lelització de multiplicacions de matrius de nombres enters i de nombres en coma flotant mitjançant el model de memòria compartida OpenMP versió 2.5 i OpenMP versió 3.0.
Resumo:
Kirje 2.5.1967
Resumo:
Kirje 2.5.1969
Resumo:
Kirje 2.5.1972
Resumo:
Kirje
Resumo:
Kirje
Resumo:
BACKGROUND: Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI) format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions. RESULTS: The HUPO-PSI has further developed the PSI-MI XML schema to enable the description of interactions between a wider range of molecular types, for example nucleic acids, chemical entities, and molecular complexes. Extensive details about each supported molecular interaction can now be captured, including the biological role of each molecule within that interaction, detailed description of interacting domains, and the kinetic parameters of the interaction. The format is supported by data management and analysis tools and has been adopted by major interaction data providers. Additionally, a simpler, tab-delimited format MITAB2.5 has been developed for the benefit of users who require only minimal information in an easy to access configuration. CONCLUSION: The PSI-MI XML2.5 and MITAB2.5 formats have been jointly developed by interaction data producers and providers from both the academic and commercial sector, and are already widely implemented and well supported by an active development community. PSI-MI XML2.5 enables the description of highly detailed molecular interaction data and facilitates data exchange between databases and users without loss of information. MITAB2.5 is a simpler format appropriate for fast Perl parsing or loading into Microsoft Excel.
Resumo:
Application of wild-type or genetically-modified bacteria to the soil environment entails the risk of dissemination of these organisms to the groundwater. To measure vertical transport of bacteria under natural climatic conditions, Pseudomonas fluorescens strain CHA0 was released together with bromide as a mobile tracer at the surface of large outdoor lysimeters. Two experiments, one starting in autumn 1993 and the other in spring 1994 were performed. Shortly after a heavy rainfall in late spring 1994, the released bacteria were detected for the first time in effluent water from the 2.5-m-deep lysimeters in both experiments, i.e. 210 d and 21 d, respectively, after inoculation. Only a 10−9 to 10−8 fraction of the inoculum was recovered as culturable cells in the effluent water, but a larger fraction of the CHA0 cells was in a non-culturable state as detected with immunofluorescence microscopy. As much as 50% of the mobile tracer percolated through the lysimeters, indicating that, compared with bromide, bacterial cells were retained in soil. In the second part of this study, persistence of CHA0 in groundwater microcosms consisting of lysimeter effluent water was studied for 380 d. Survival of the inoculant as culturable cells was better under anaerobic than under aerobic conditions. However, a large fraction of the cells became non-culturable in both cases. When the experiment was performed with filter-sterilized effluent water, the total count of introduced bacteria did not decline with time. In conclusion, the biocontrol strain was transported in low numbers to a potential groundwater level under natural climatic conditions, but could persist for an extended period in groundwater microcosms.
Resumo:
On July 1, 2005, the State of Iowa implemented a 70 mile per hour (mph) speed limit on most rural Interstates. This document reports on a study of the safety effect of this change. Changes in speeds, traffic volume on and off the rural Interstate system (diversion), and safety (crashes) for on- and off-system roads were studied. After the change, mean and 85th percentile speeds increased by about 2 mph on rural Interstates, but speeding was reduced (the number of drivers exceeding the speed limit by 10 mph decreased from 20 per cent to about 8 per cent). Daytime and nighttime serious crashes were studied for a period of 14 and a half years prior to the change and 2 and a half years afterwards. Simple descriptive statistics reveal increases in all crash severity categories for the 2 and a half year period following the speed limit increase when compared to the most recent comparable 2 and a half year period prior to the increase. When compared to longer term trends, the increases were less pronounced in some severity levels and types, and for a few severity levels the average crash frequencies were observed to decrease. However, fatal and other serious cross-median crashes increased by relatively larger amounts as compared to expected random variation. The study also analyzed crash frequencies grouped into six-month periods, revealing similar findings.
Resumo:
The stability constants of the 1:1 complexes formed between M2+ (M2+: Mn2+, Ni2+, Cu2+, or Cd2+) and BMADA2- (BMADA: 2,2'-(5-bromo-6-methylpyrimidine-2,4 diyl)bis(azanediyl)dipropanoic acid) were determined by potentiometric pH titration in aqueous solution (I = 0.1 mol L-1, NaNO3, 25 °C). The stability of the binary M - BMADA complexes is determined by the basicity of the carboxyl or amino groups. All the stability constants reported in this work exhibit the usual trend, and the order obtained was Mn2+< Ni2+ < Cu2+ > Cd2+. The observed stability order for BMADA approximately follows the Irving - Williams sequence. In the M - BMADA complexes, the M ion is able to form a macrochelate via the pyrimidine group of BMADA.
Resumo:
Drug trafficking and the introduction of new drugs onto the illicit market are one of the main challenges of the forensic community. In this study, the chemical profile of a new designer drug, 2-(4-iodine-2,5-dimethoxyphenyl)-n-[(2-methoxyphenyl)methyl]etamine or 25I-NBOMe was explored using thin layer chromatography (TLC), ultraviolet-visible spectrophotometry (UV-Vis), attenuated total reflection with Fourier transform infrared spectroscopy(ATR-FTIR), gas chromatography mass spectrometry (GC-MS) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS). First, the TLC technique was effective for identifying spots related to 25C-, 25B- and 25I-NBOMe compounds, all with the same retention factor, Rf ≈ 0.50. No spot was detected for 2,5-dimethoxy-4-bromoamphetamine, 2,5-Dimethoxy-4-chloroamphetamine or lysergic acid diethylamide compounds. ATR-FTIR preserved the physical-chemical properties of the material, whereas GC-MS and ESI-MS showed better analytical selectivity. ESI(+)FT-ICR MS was used to identify the exact mass (m/z428.1706 for the [M + H]+ ion), molecular formula (M = C18H22INO3), degree of unsaturation (DBE = 8) and the chemical structure (from collision induced dissociation, CID, experiments) of the 25I-NBOMe compound. Furthermore, the ATR-FTIR and CID results suggested the presence of isomers, where a second structure is proposed as an isomer of the 25I-NBOMe molecule.
A Study on Health Effects of Fine Particle Concentrations in Tampere area during 2.5 Years Follow-up