998 resultados para total arsenic
Resumo:
The authors assessed the contribution of food irrigated with arsenic-contaminated water to human exposure to arsenic in Bangladesh. An intervention trial was conducted in a village in the Jessore District of Bangladesh, where irrigation water had been field-tested in March 2000 and was found to contain arsenic with concentrations ranging from 100 to 500 mu g/l. In May 2000, a random sample of 63 households was selected from the village, and I eligible person from each household was recruited to the study and randomized to an intervention or control group. The intervention group received food purchased from a village where irrigation water was found to contain 100 mu g/l arsenic. Pre- and postintervention urine samples were collected for urinary arsenic speciation assays. Preintervention, the mean urinary total arsenic concentrations were 139.25 mu g/l and 129.15 mu g/l for the intervention and control groups, respectively. These concentrations did not change significantly following intervention. Arsenic concentrations in samples of selected raw and cooked foods from the low-contamination area did not contain less arsenic than samples from the high-contamination area. Further studies to investigate the arsenic content of food grown in areas with high and low arsenic contamination of irrigation water are recommended.
Resumo:
Arsenic is a human carcinogen that has been found in various waters and wines throughout the world. Therefore, close examination of these liquids is necessary to prevent the intoxication of animals and humans. Wines and waters often contain significant amounts of toxic arsenic species. The source of arsenic in wines and waters is generally believed to be the result of arsenic-based pesticides and herbicides. Recent studies have also shown that toxic arsenic may be used in the cultivation and acceleration of the ripening process of fruit, ultimately contaminating fruit-based beverages. The determination of total arsenic can be found by using several methods, including AFS or ICP/MS. No pretreatment of water is necessary, except for filtering by means of a Fisherbrand PTFE 0.45 connected to a Becton-Dickinson 10 mL syringe to filter particles from water. The pretreatment of the wine includes ethanol evaporation and an addition of 0.1% nitric acid. A number of commercial drinking waters and regional lake water were analyzed. Since we have confirmed the presence of arsenic in a variety of waters and wines from different countries, we decided to test a number of commercially available beverages for the presence of arsenic. The focus ofthis project is to establish the presence of arsenic in various commercially available beverages. ICP-MS was used to determine total arsenic using certified standards. Internal standards Indium and Yttrium were also used to verify the concentration readings, which varied from 0- 20 ppb.
Resumo:
Wydział Chemii: Pracownia Analizy Spektroskopowej Pierwiastków
Resumo:
Part I: Ultra-trace determination of vanadium in lake sediments: a performance comparison using O2, N20, and NH3 as reaction gases in ICP-DRC-MS Thermal ion-molecule reactions, targeting removal of specific spectroscopic interference problems, have become a powerful tool for method development in quadrupole based inductively coupled plasma mass spectrometry (ICP-MS) applications. A study was conducted to develop an accurate method for the determination of vanadium in lake sediment samples by ICP-MS, coupled with a dynamic reaction cell (DRC), using two differenvchemical resolution strategies: a) direct removal of interfering C10+ and b) vanadium oxidation to VO+. The performance of three reaction gases that are suitable for handling vanadium interference in the dynamic reaction cell was systematically studied and evaluated: ammonia for C10+ removal and oxygen and nitrous oxide for oxidation. Although it was able to produce comparable results for vanadium to those using oxygen and nitrous oxide, NH3 did not completely eliminate a matrix effect, caused by the presence of chloride, and required large scale dilutions (and a concomitant increase in variance) when the sample and/or the digestion medium contained large amounts of chloride. Among the three candidate reaction gases at their optimized Eonditions, creation of VO+ with oxygen gas delivered the best analyte sensitivity and the lowest detection limit (2.7 ng L-1). Vanadium results obtained from fourteen lake sediment samples and a certified reference material (CRM031-040-1), using two different analytelinterference separation strategies, suggested that the vanadium mono-oxidation offers advantageous performance over the conventional method using NH3 for ultra-trace vanadium determination by ICP-DRC-MS and can be readily employed in relevant environmental chemistry applications that deal with ultra-trace contaminants.Part II: Validation of a modified oxidation approach for the quantification of total arsenic and selenium in complex environmental matrices Spectroscopic interference problems of arsenic and selenium in ICP-MS practices were investigated in detail. Preliminary literature review suggested that oxygen could serve as an effective candidate reaction gas for analysis of the two elements in dynamic reaction cell coupled ICP-MS. An accurate method was developed for the determination of As and Se in complex environmental samples, based on a series of modifications on an oxidation approach for As and Se previously reported. Rhodium was used as internal standard in this study to help minimize non-spectral interferences such as instrumental drift. Using an oxygen gas flow slightly higher than 0.5 mL min-I, arsenic is converted to 75 AS160+ ion in an efficient manner whereas a potentially interfering ion, 91Zr+, is completely removed. Instead of using the most abundant Se isotope, 80Se, selenium was determined by a second most abundant isotope, 78Se, in the form of 78Se160. Upon careful selection of oxygen gas flow rate and optimization ofRPq value, previous isobaric threats caused by Zr and Mo were reduced to background levels whereas another potential atomic isobar, 96Ru+, became completely harmless to the new selenium analyte. The new method underwent a strict validation procedure where the recovery of a suitable certified reference material was examined and the obtained sample data were compared with those produced by a credible external laboratory who analyzed the same set of samples using a standardized HG-ICP-AES method. The validation results were satisfactory. The resultant limits of detection for arsenic and selenium were 5 ng L-1 and 60 ng L-1, respectively.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A contaminação ambiental por arsênio vem aumentando nos últimos anos, seja através de fontes naturais ou antropogênicas, o que pode ocasionar uma maior exposição do homem a este composto tóxico. Vários estudos vêm analisando o potencial de espécies cianobacterianas como possíveis biorremediadoras na busca de soluções para diminuir os impactos causados por este metaloide. A cianobactéria filamentosa Phormidium sp. se destaca por apresentar mecanismos bem desenvolvidos de adaptação às diversas condições ambientais. O presente estudo objetivou analisar o perfil de resistência da Phormidium sp. em diferentes concentrações de arsenato de sódio. A cianobactéria foi inoculada em tubos contendo 4 mL de meio BG-11 líquido e diferentes concentrações de arsenato (5, 10, 30, 50, 100, 130, 150, 200 e 250 mM) e sem a presença do metaloide (controle) e cultivadas durante 20 dias a 25ºC, sem agitação e com fotoperíodo de 12/12 horas de luz/escuro. A toxicidade do arsenato para Phormidium sp. foi caracterizada pela inibição do crescimento, sendo este determinado pela concentração de clorofila a. Todas as condições foram realizadas em triplicatas. A determinação do arsênio total presente nas amostras foi obtida através da técnica de espectrometria de emissão óptica com plasma induzido, do Instituto Evandro Chagas. A resistência de Phormidium sp. ao arsenato foi observada em até 50 mM do composto (p>0,05). À partir de 100 mM de arsenato foi observada inibição do crescimento cianobacteriano (p<0,05). As análises da dosagem de arsênio total no meio de cultura mostram que, durante os primeiros dias de experimento, a concentração de arsênio no meio de cultura foi reduzido, seguido de um aumento gradativo na concentração deste metaloide. Provavelmente, esta cianobacteria pode acumular o arsênio e posteriormente excretar este metaloide para o meio extracelular. Os resultados obtidos indicam a capacidade que a cianobactéria Phormidium sp. possui de crescer em meio contendo altas concentrações de arsênio. No entanto, outras análises se tornam fundamental para elucidar as vias metabólicas envolvidas durante o processo de resistência a este metaloide.
Resumo:
O arsênio é um metalóide tóxico que se tornou um problema de saúde pública em todo o mundo. Como forma de reduzir a contaminação ambiental por este metalóide, a qual é proveniente de atividades antropogênicas e naturais, a utilização de microorganismos em processos de biorremediação se tem mostrado uma estratégia promissora. A cianobactéria filamentosa homocitada, Geitlerinema unigranulatum UFV-E01, pertencente à ordem Pseudanabaenales, foi isolada de um ambiente contaminado por arsênio, sugerindo uma habilidade em lidar com o efeito tóxico deste metalóide. Com vista nisso, o presente trabalho objetivou caracterizar a resistência ao arsenato de sódio e quantificar o arsênio total extracelular da cianobactéria G. unigranulatum UFV-E01. As análises de resistência ao arsenato de sódio revelaram que a cianobactéria foi capaz de crescer em até 50 mM por 20 dias. Além disso, a cianobactéria G. unigranulatum UFV-E01 acumulou arsenato de sódio por 10 dias, reduzindo em até 67% o arsênio extracelular. Pelos dados obtidos neste estudo, a cianobactéria G. unigranulatum UFV-E01 foi capaz de resistir a altas concentrações de arsenato de sódio, no entanto outras análises, como a caracterização das vias metabólicas envolvidas no processo de resistência, devem ser realizadas para considerar sua aplicação em ambientes impactados por arsênio.
Resumo:
Várias toneladas de rejeito de manganês contendo arsênio, gerado por uma empresa de mineração, foram utilizadas como aterro de ruas da cidade de Santana-AP. A possibilidade de exposição das pessoas residentes nessas localidades levou ao estudo de quantificação de arsênio total nos solos. Após a digestão, os teores de arsênio foram quantificados por espectrofotometria de absorção molecular usando um sistema automático de geração de hidretos (HG-MAS), diciclohexilamina/CHCl3 como solvente do dietilditiocarbamato de prata (SDDC) e KBH4 como redutor. O método apresentou bons resultados com sensibilidade (ε) de 1,10 104 L.mol-1.cm-1, estabilidade de 2,96% e outras vantagens em relação ao método oficial. O método foi aplicado em amostras de referência de solo com recuperação de 98,82 % (N=10). As análises de solos mostraram que do total de amostras analisadas 94,74 % apresentaram concentração de arsênio acima do valor editado pela CETESB para solo residencial (50 mg.kg-1) com valor médio de 682,96 mg.kg-1, variando de 48,08 mg.kg-1 a 1.713,00 mg.kg-1 que comprova a contaminação do solo pelo arsênio.
Resumo:
Lake sturgeon (Acipenser fulvescens) were historically abundant in the Huron-Erie Corridor (HEC), a 160 km river/channel network composed of the St. Clair River, Lake St. Clair, and the Detroit River that connects Lake Huron to Lake Erie. In the HEC, most natural lake sturgeon spawning substrates have been eliminated or degraded as a result of channelization and dredging. To address significant habitat loss in HEC, multi-agency restoration efforts are underway to restore spawning substrate by constructing artificial spawning reefs. The main objective of this study was to conduct post-construction monitoring of lake sturgeon egg deposition and larval emergence near two of these artificial reef projects; Fighting Island Reef in the Detroit River, and Middle Channel Spawning Reef in the lower St. Clair River. We also investigated seasonal and nightly timing of larval emergence, growth, and vertical distribution in the water column at these sites, and an additional site in the St. Clair River where lake sturgeon are known to spawn on a bed of ~100 year old coal clinkers. From 2010-12, we collected viable eggs and larvae at all three sites indicating that these artificial reefs are creating conditions suitable for egg deposition, fertilization, incubation, and larval emergence. The construction methods and materials, and physical site conditions present in HEC artificial reef projects can be used to inform future spawning habitat restoration or enhancement efforts. The results from this study have also identified the likelihood of additional uncharacterized natural spawning sites in the St. Clair River. In addition to the field study, we conducted a laboratory experiment involving actual substrate materials that have been used in artificial reef construction in this system. Although coal clinkers are chemically inert, some trace elements can be reincorporated with the clinker material during the combustion process. Since lake sturgeon eggs and larvae are developing in close proximity to this material, it is important to measure the concentration of potentially toxic trace elements. This study focused on arsenic, which occurs naturally in coal and can be toxic to fishes. Total arsenic concentration was measured in samples taken from four substrate treatments submerged in distilled water; limestone cobble, rinsed limestone cobble, coal clinker, and rinsed coal clinker. Samples were taken at three time intervals: 24 hours, 11 days, and 21 days. ICP-MS analysis showed that concentrations of total arsenic were below the EPA drinking water standard (10 ppb) for all samples. However, at the 24 hour sampling interval, a two way repeated measures ANOVA with a Holm-Sidak post hoc analysis (α= 0.05) showed that the mean arsenic concentration was significantly higher in the coal clinker substrate treatment then in the rinsed coal clinker treatment (p=0.006), the limestone cobble treatment (p
Resumo:
For the world's population, rice consumption is a major source of inorganic arsenic (As), a nonthreshold class 1 carcinogen. Reducing the amount of total and inorganic As within the rice grain would reduce the exposure risk. In this study, grain As was measured in 76 cultivars consisting of Bangladeshi landraces, improved Bangladesh Rice Research Institute (BRRI) cultivars, and parents of permanent mapping populations grown in two field sites in Bangladesh, Faridpur and Sonargaon, irrigated with As-contaminated tubewell water. Grain As ranged from 0.16 to 0.74 mg kg(-1) at Faridpur and from 0.07 to 0.28 mg kg(-1) at Sonargaon. Highly significant cultivar differences were detected and a significant correlation (r = 0.802) in the grain As between the two field sites was observed, indicating stable genetic differences in As accumulation. The cultivars with the highest concentration of grain As were the Bangladeshi landraces. Landraces with red bran had significantly more grain As than the cultivars with brown bran. The percent of inorganic As decreased linearly with increasing total As, but genetic variation within this trend was identified. A number of local cultivars with low grain As were identified. Some tropical japonica cultivars with low grain As have the potential to be used in breeding programs and genetic studies aiming to identify genes which decrease grain As.
Resumo:
Abstract Image
A high-capacity diffusive gradients in thin films (DGT) technique has been developed for measurement of total dissolved inorganic arsenic (As) using a long shelf life binding gel layer containing hydrous zirconium oxide (Zr-oxide). Both As(III) and As(V) were rapidly accumulated in the Zr-oxide gel and could be quantitatively recovered by elution using 1.0 M NaOH for freshwater or a mixture of 1.0 M NaOH and 1.0 M H2O2 for seawater. DGT uptake of As(III) and As(V) increased linearly with deployment time and was independent of pH (2.0–9.1), ionic strength (0.01–750 mM), the coexistence of phosphate (0.25–10 mg P L–1), and the aging of the Zr-oxide gel up to 24 months after production. The capacities of the Zr-oxide DGT were 159 μg As(III) and 434 μg As(V) per device for freshwater and 94 μg As(III) and 152 μg As(V) per device for seawater. These values were 5–29 times and 3–19 times more than those reported for the commonly used ferrihydrite and Metsorb DGTs, respectively. Deployments of the Zr-oxide DGT in As-spiked synthetic seawater provided accurate measurements of total dissolved inorganic As over the 96 h deployment, whereas ferrihydrite and Metsorb DGTs only measured the concentrations accurately up to 24 and 48 h, respectively. Deployments in soils showed that the Zr-oxide DGT was a reliable and robust tool, even for soil samples heavily polluted with As. In contrast, As in these soils was underestimated by ferrihydrite and Metsorb DGTs due to insufficient effective capacities, which were likely suppressed by the competing effects of phosphate.
Resumo:
In this work, a preconcentration and separation system based on continuous flow hydride generation is proposed to improve the determination of As and Se by total reflection X-ray fluorescence spectrometry. The generated hydrides are continuously separated from the liquid phase and collected in a chamber containing 250 mul of HCI/HNO3 1:1 (v/v) solution. Hydride generation conditions and collection of the hydrides were evaluated. Under optimised conditions, enrichment factors of 55 for As and 82 for Se were attained. Detection limits of 0.3 mug l(-1) for As and Se were obtained when 20 ml of sample was used. Analysis of a natural water standard reference material from National Institute of Standard and Technology (SRM-1640) was in agreement with the certified values at the 95% confidence level. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we determined the concentrations of antimony species (antimonite (Sb(III)), antimonate (Sb(V)) and dissolved inorganic antimony (DISb)) and arsenic, in Bohai Bay seawaters, as well as the relationships of the analytes with environmental factors such as seawater characteristics (e.g., suspended particulate material (SPM), salinity and total organic carbon (TOC)), heavy metals, nutrients and phytoplankton species, and evaluated the sources of arsenic and antimony. Dissolved arsenic and antimony concentrations in the surface waters were ranging spatially from 1.03 to 1.26 ng/ml and 0.386 to 1.075 ng/ml, with mean values of 1.18 and 0.562 ng/ml, respectively. Sb(V) as the prominent chemical species constituted about 89%. Regarding arsenic concentrations in the surface waters, there was a tendency for a small variation. However, antimony species concentrations were much variable than arsenic. The highest arsenic and antimony concentrations were found near the Haihe Estuary. These distribution patterns were controlled mainly by environmental factors, biological activities and sources. In this region, DISb and Sb(V) negatively correlated with salinity. Besides, arsenic and antimony correlated well with the nutrients, chlorophyll a and phytoplankton, implying that arsenic and antimony had been involved in biological cycling. In addition, according to our estimate, about 333.5 x 10(8) mg/year of arsenic and 454.2 x 10(8) mg/year of antimony reached Bohai Bay via rivers. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
p.105-109