912 resultados para tissue inhibitor of metalloproteinase
Resumo:
Tissue destruction characterizes infection with Mycobacterium tuberculosis (Mtb). Type I collagen provides the lung's tensile strength, is extremely resistant to degradation, but is cleaved by matrix metalloproteinase (MMP)-1. Fibroblasts potentially secrete quantitatively more MMP-1 than other lung cells. We investigated mechanisms regulating Mtb-induced collagenolytic activity in fibroblasts in vitro and in patients. Lung fibroblasts were stimulated with conditioned media from Mtb-infected monocytes (CoMTb). CoMTb induced sustained increased MMP-1 (74 versus 16 ng/ml) and decreased tissue inhibitor of metalloproteinase (TIMP)-1 (8.6 versus 22.3 ng/ml) protein secretion. CoMTb induced a 2.7-fold increase in MMP-1 promoter activation and a 2.5-fold reduction in TIMP-1 promoter activation at 24 hours (P = 0.01). Consistent with this, TIMP-1 did not co-localize with fibroblasts in patient granulomas. MMP-1 up-regulation and TIMP-1 down-regulation were p38 (but not extracellular signal–regulated kinase or c-Jun N-terminal kinase) mitogen-activated protein kinase–dependent. STAT3 phosphorylation was detected in fibroblasts in vitro and in tuberculous granulomas.STAT3 inhibition reduced fibroblast MMP-1 secretion by 60% (P = 0.046). Deletion of the MMP-1 promoter NF-B–binding site abrogated promoter induction in response to CoMTb. TNF-, IL-1ß, or Oncostatin M inhibition in CoMTb decreased MMP-1 secretion by 65, 63, and 25%, respectively. This cytokine cocktail activated the same signaling pathways in fibroblasts and induced MMP-1 secretion similar to that induced by CoMTb. This study demonstrates in a cellular model and in patients with tuberculosis that in addition to p38 and NF-B, STAT3 has a key role in driving fibroblast-dependent unopposed MMP-1 production that may be key in tissue destruction in patients.
Resumo:
Oxidative stress may increase lung permeability by upregulation of matrix-metalloproteinase-9 (MMP-8), a type-IV collagenase that can disrupt alveolar basement membranes. We have compared a marker of oxidative stress (protein carbonyl residues) with levels of MMP-8 and its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), in bronchoalveolar lavage samples from newborn babies. Bronchoalveolar lavage samples (n = 87, two from each time point) were taken in the first 6 postnatal days from 41 ventilated babies: 18 of
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.
Resumo:
It has recently been suggested that regular exercise reduces lung function decline and risk of chronic obstructive pulmonary disease (COPD) among active smokers; however, the mechanisms involved in this effect remain poorly understood. The present study evaluated the effects of regular exercise training in an experimental mouse model of chronic cigarette smoke exposure. Male C57BL/6 mice were divided into four groups (control, exercise, smoke and smoke+exercise). For 24 weeks, we measured respiratory mechanics, mean linear intercept, inflammatory cells and reactive oxygen species (ROS) in bronchoalveolar lavage (BAL) fluid, collagen deposition in alveolar walls, and the expression of antioxidant enzymes, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase (TIMP) 1, interleukin (IL)-10 and 8-isoprostane in alveolar walls. Exercise attenuated the decrease in pulmonary elastance (p<0.01) and the increase in mean linear intercept (p=0.003) induced by cigarette smoke exposure. Exercise substantially inhibited the increase in ROS in BAL fluid and 8-isoprostane expression in lung tissue induced by cigarette smoke. In addition, exercise significantly inhibited the decreases in IL-10, TIMP1 and CuZn superoxide dismutase induced by exposure to cigarette smoke. Exercise also increased the number of cells expressing glutathione peroxidase. Our results suggest that regular aerobic physical training of moderate intensity attenuates the development of pulmonary disease induced by cigarette smoke exposure.
Resumo:
Introduction: Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) are strongly associated with tissue destruction because of inflammation. In this study, we investigated the expression of MMPs and TIMPs messenger RNA and protein levels in apical periodontitis lesions. Methods: Tissue samples from patients presenting clinical signs of chronic apical abscess (CAA) or asymptomatic apical periodontitis (AAP) were collected postoperatively and used for gene expression analysis of MMP-2, -3, -7, -9, -14, -16, and -25; TIMP-1; and TIMP-2 in real-time polymerase chain reaction. Immunohistochemistry was also performed to detect the expression of MMP-7 and TIMP-1 proteins. Lastly, U-937 cells were induced to terminal differentiation into macrophages, infected with purified Escherichia coli lipopolysaccharide, and assessed for the expression of MMP-7 and TIMP-1 using immunocytochemistry and confocal microscopy. Results: Significantly higher messenger RNA levels were found for all genes in AAP and CAA samples when compared with healthy control samples (P < .001). AAP cases exhibited significantly higher TIMP-1 when compared with CAA cases, whereas CAA cases showed higher MMP-2, MMP-7, and MMP-9 messenger RNA levels (P < .05). We also detected positive the expression of MMP-7 and TIMP-1 proteins in the tissue samples. The expression of both MMP-7 and TIMP-1 were increased in lipopolysaccharide-stimulated cells compared with nonstimulated cells and appear to colocalize in the Golgi apparatus. Conclusions: MMPs appear to have an influential role in CAA cases in which ongoing tissue destruction is observed. TIMPs are preferentially associated with AAP, perhaps as a subsequent defense mechanism against excessive destruction. Taken together, our findings implicate MMP and TIMP molecules in the dynamics of inflammatory periapical lesion development
Resumo:
Matrix metalloproteinase-9 (MMP-9) cleaves collagen, allowing leukocytes to traffic toward the vasculature and the lymphatics. When MMP-9 is unregulated by tissue inhibitor of metalloproteinase-1 (TIMP-1), this can lead to tissue destruction. Dendritic cells (DCs) infiltrate the oral mucosa increasingly in chronic periodontitis, characterized by infection with several pathogens including Porphyromonas gingivalis. In this study, human monocyte-derived DCs were pulsed with different doses of lipopolysaccharide of P. gingivalis 381 and of Escherichia coli type strain 25922, as well as whole live isogenic fimbriae-deficient mutant strains of P. gingivalis 381. Levels of induction of MMP-9 and TIMP-1, as well as interleukin-10 (IL-10), which reportedly inhibits MMP-9 induction, were measured by several approaches. Our results reveal that lipopolysaccharide of P. gingivalis, compared with lipopolysaccharide from E. coli type strain 25922, is a relatively potent inducer of MMP-9, but a weak inducer of TIMP-1, contributing to a high MMP-9/TIMP-1 ratio.Whole live P. gingivalis strain 381, major fimbriae mutant DPG-3 and double mutant MFB were potent inducers of MMP-9, but minor fimbriae mutant MFI was not. MMP-9 induction was inversely proportional to IL-10 induction. These results suggest that lipopolysaccharide and the minor and the major fimbriae of P. gingivalis may play distinct roles in induction by DCs of MMP-9, a potent mediator of local tissue destruction and leukocyte trafficking.
Resumo:
BACKGROUND Life style changes and statins are the cornerstones in management of dyslipidemia in HIV-infected patients. Replacement of an antiretroviral therapy (ART) component is a proposed therapeutic strategy to reduce cardiovascular risk. In dyslipidemic HIV-positive patients, we assessed the efficacy of replacing boosted protease inhibitor (bPI) or efavirenz (EFV) by etravirine (ETR) as an alternative to statin therapy. MATERIALS AND METHODS A prospective, open-label, multicentre, 12-week study of HIV-infected patients on ART including bPI or EFV, and statin treatment. Four weeks after statin interruption, bPI or EFV were switched to ETR (400 mg, 8 weeks) if serum low-density lipoprotein cholesterol (LDL-c) was ≥ 3 mmol/L. The primary endpoint was the proportion of patients on ETR with no indication for statin treatment at study completion. Serum levels of HIV-RNA, lipids, and biomarkers of cardiovascular disease were also measured. (ClinicalTrialsgov: NCT01543035). RESULTS The 31 included patients had a HIV1-RNA <50 copies/mL (median age, 52 years; median CD4, 709 cell/mL; median LDL-c, 2.89 mmol/L), 68% were on EFV, 32% on bPI. At week 4, 27 patients switched to ETR. At study completion, 15 patients (56%) on ETR did not qualify for statin treatment. After the ETR switch, serum levels of the cardiovascular biomarkers sICAM and MCP1/CCL2 decreased by 11.2% and 18.9%, respectively, and those of CCL5/RANTES and tissue inhibitor of metalloproteinase-1 increased by 14.3% and 13.4%, respectively, indicating reduced cardiovascular risk. There were no notable treatment-related adverse events. CONCLUSIONS Replacing bPI or EFV by ETR is a viable strategy to obviate primary prevention statin treatment. This article is protected by copyright. All rights reserved.
Resumo:
Tissue remodeling often reflects alterations in local mechanical conditions and manifests as an integrated response among the different cell types that share, and thus cooperatively manage, an extracellular matrix. Here we examine how two different cell types, one that undergoes the stress and the other that primarily remodels the matrix, might communicate a mechanical stress by using airway cells as a representative in vitro system. Normal stress is imposed on bronchial epithelial cells in the presence of unstimulated lung fibroblasts. We show that (i) mechanical stress can be communicated from stressed to unstressed cells to elicit a remodeling response, and (ii) the integrated response of two cell types to mechanical stress mimics key features of airway remodeling seen in asthma: namely, an increase in production of fibronectin, collagen types III and V, and matrix metalloproteinase type 9 (MMP-9) (relative to tissue inhibitor of metalloproteinase-1, TIMP-1). These observations provide a paradigm to use in understanding the management of mechanical forces on the tissue level.
Resumo:
Cleft lip and palate syndromes are among the most common congenital malformations in humans. Mammalian palatogenesis is a complex process involving highly regulated interactions between epithelial and mesenchymal cells of the palate to permit correct positioning of the palatal shelves, the remodeling of the extracellular matrix (ECM), and subsequent fusion of the palatal shelves. Here we show that several matrix metalloproteinases (MMPs), including a cell membrane-associated MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) were highly expressed by the medial edge epithelium (MEE). MMP-13 was expressed both in MEE and in adjacent mesenchyme, whereas gelatinase A (MMP-2) was expressed by mesenchymal cells neighboring the MEE. Transforming growth factor (TGF)-β3-deficient mice, which suffer from clefting of the secondary palate, showed complete absence of TIMP-2 in the midline and expressed significantly lower levels of MMP-13 and slightly reduced levels of MMP-2. In concordance with these findings, MMP-13 expression was strongly induced by TGF-β3 in palatal fibroblasts. Finally, palatal shelves from prefusion wild-type mouse embryos cultured in the presence of a synthetic inhibitor of MMPs or excess of TIMP-2 failed to fuse and MEE cells did not transdifferentiate, phenocopying the defect of the TGF-β3-deficient mice. Our observations indicate for the first time that the proteolytic degradation of the ECM by MMPs is a necessary step for palatal fusion.
Resumo:
Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view of their potent immunomodulatory properties, which are only partially understood. Here, we show that the endothelium is a specific and key target of MSC during immunity and inflammation. In mice, MSC inhibit activation and proliferation of endothelial cells in remote inflamed lymph nodes (LNs), affect elongation and arborization of high endothelial venules (HEVs) and inhibit T-cell homing. The proteomic analysis of the MSC secretome identified the tissue inhibitor of metalloproteinase-1 (TIMP-1) as a potential effector molecule responsible for the anti-angiogenic properties of MSC. Both in vitro and in vivo, TIMP-1 activity is responsible for the anti-angiogenic effects of MSC, and increasing TIMP-1 concentrations delivered by an Adeno Associated Virus (AAV) vector recapitulates the effects of MSC transplantation on draining LNs. Thus, this study discovers a new and highly efficient general mechanism through which MSC tune down immunity and inflammation, identifies TIMP-1 as a novel biomarker of MSC-based therapy and opens the gate to new therapeutic approaches of inflammatory diseases.
Resumo:
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists are increasingly used in patients with diabetes, and small studies have suggested a beneficial effect on renal function, but their effects on. extracellular matrix (ECM) turnover are unknown. The aims of this study were to investigate the effects of the PPAR-gamma agonist pioglitazone on growth and matrix production in human cortical fibroblasts (CF). Cell growth and ECM production and turnover were measured in human CF in the presence and absence of 1 and 3 muM pioglitazone. Exposure of CF to pioglitazone caused an antiproliferative (P < 0.0001) and hypertrophic (P < 0.0001) effect; reduced type IV collagen secretion (P < 0.01), fibronectin secretion (P < 0.0001), and proline incorporation (P < 0.0001); decreased MMP-9 activity (P < 0.05); and reduced tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 secretion (P < 0.001 and P < 0.0001, respectively). These effects were independent of TGF-beta1. A reduction in ECM production was similarly observed when CF were exposed to a selective PPAR-gamma agonist (L-805645) in concentrations that caused no toxicity, confirming the antifibrotic effects of pioglitazone were mediated through a PPAR-gamma-dependent mechanism. Exposure of CF to high glucose conditions induced an increase in the expression of collagen IV (P < 0.05), which was reversed both in the presence of pioglitazone (1 and 3 muM) and by L-805645. In summary, exposure of human CIF to pioglitazone causes an antiproliferative effect and reduces ECM production through mechanisms that include reducing TIMP activity, independent of TGF-beta1. These studies suggest that the PPAR-gamma agonists may have a specific role in ameliorating the course of progressive tubulointerstitial fibrosis under both normoglycemic and hyperglycemic states.
Resumo:
During wound repair, the balance between matrix metalloproteinases (MMPs) and their natural inhibitors (the TIMPs) is crucial for the normal extra cellular matrix turnover. However, the over expression of several MMPs including MMP-1, 2, 3, 8, 9 and MMP-10, combined with abnormally high levels of activation or low expression of TIMPs, may contribute to excessive degradation of connective tissue and formation of chronic ulcers. There are many groups exploring strategies for promoting wound healing involving delivery of growth factors, cells, ECM components and small molecules. Our approach for improving the balance of MMPs is not to add anything more to the wound, but instead to neutralise the over-expressed MMPs using inhibitors tethered to a bandage-like hydrogel. Our in vitro experiments using designed synthetic pseudo peptide inhibitors have been demonstrated to inhibit MMP activity in standard solutions. These inhibitors have also been tethered to polyethylene glycol hydrogels using a facile reaction between the linker unit on the inhibitor and the gel. After tethering the inhibition of MMPs diminishes to some extent and we postulate that this arises due to poor diffusion of the MMPs into the gels. When the tethered inhibitors were tested against chronic wound fluid obtained against patients we observed over 40% inhibition in proteolytic activity suggesting our approach may prove useful in rebalancing MMPs within chronic wounds.