57 resultados para sweetness
Resumo:
The chemical and biochemical composition of mango, varies according to the cultivation conditions, variety and maturation state, generally containing a high level of ascorbic acid. In order to establish the correlation between the activity of the ascorbate oxidase [E.C.1.10.3.3], and ascorbic acid level in the ripening process of the Haden mango (Mangífera índica L.), sample of the fruits related to hard green stage (zero), 2, 4, 6, 8, 10, 12 and 14 days stored at 20 ± 2oC, were tested. The samples were obtained by cutting small cubes of 8 cm3 from pulps of 8 mangoes with texture without significant difference (p£0.05) at Magness-Taylor pressure tester scale. In each sample the activity of ascorbate oxidase was followed, in order to check its participation in possible substrate losses during the ripening fruits. The ascorbic acid level and sensory profile also was determined periodically during the ripening period. The enzymatic activity was spectrophotometrically determined at 245 nm and 30oC. The ascorbic acid was analyzed according modified AOAC methodology, and sensory analysis by descriptive quantitative analysis. Data were analyzed using correlation analysis, analysis of variance (ANOVA), Tukey's test, principal component analysis and stepwise discriminant analysis. During the ripening, the ascorbate oxidase activity increased (from 0 to 5.0 x 10-1 U/ml) and the ascorbic acid level decreased (from 209.3 mg to 110.0 mg per 100g of pulp), showing a significant (p£0.05) inverse linear correlation (r=-0.98). The descriptors terms for mangoes were: characteristic flavor, characteristic aroma, sourness, astringency, yellow coloration of pulp, sweetness and succulence. The sensory profile presented significant improvement during ripening. All sensory attributes increased significantly (p£0.05) except sourness and astringency, wich decreased during the ripening of mangoes.
Resumo:
Langmuir-Blodgett (LB) films from a ruthenium complex, mer-[RuCl3(dppb)(py)] (dppb = PPh2(CH2)(4)PPh2; py = pyridine) (Rupy), and from mixtures with varied amounts of polyaniline (PANi) were fabricated. Molecular-level interactions between the two components are investigated by surface potential, dc conductivity and Raman spectroscopy measurements, particularly for the mixed film with 10% of Rupy. For the latter, the better miscibility led to an interaction with Rupy inducing a decrease in the conducting state of PANi, as observed in the Raman spectra and conductivity measurement. The interaction causes the final film properties to depend on the concentration of Rupy, and this was exploited to produce a sensor array made up of sensing units consisting of 11-layer LB films from pure PANi, pure Rupy and mixtures with 10 and 30% of Rupy. It is shown that the combination of only four non-specific sensing units allows one to distinguish the basic tastes detected by biological systems, viz. saltiness, sweetness, sourness and bitterness, at the muM level. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Papaya is a fruit whose pulp has attractive sensory, chemical and digestive characteristics, with high production in the country. Nevertheless, the nectar of this fruit is not widespread in the market. Thus, this study aimed to develop nectars of papaya with different sugar contents to adjust the sweetness to sugar ideal for this product. Four formulations of nectar of papaya were prepared with the same proportions of pulp and water, and sugar concentrations at 6, 8, 10 and 12%. One hundred untrained panelists participated to the affective test of acceptance by the just-about-right scale with nine categories, ranging from extremely less sweet than ideal to extremely sweeter than ideal. There was an increase in the percentage for the ideal sweetness as sugar concentration increased from 6 to 12%. There was also verified a predominance in the frequency of responses for the categories less sweet than ideal to nectar of papaya with 6% sugar and for the categories sweeter than ideal to nectar of papaya with 12% sugar. The sugar concentration must be 10.4% to obtain nectar papaya with ideal sweetness.
Resumo:
Interest in oligosaccharide production and its general characteristics is growing. The physiological effects resulting from its ingestion make them more attractive than its sweetness, and the versatility of these carbohydrates allows their use for human and animal nutrition, pharmacology and the cosmetics industry, among others. Several microorganisms are involved in enzyme production to create oligomers with biological activity, including fructooligosaccharides, galactooligosaccharides and aminoglucanoligosaccharides. Some oligomers are currently on the market, but the search for new microorganisms producing enzymes, high-yield processes for obtaining oligosaccharides, different physiological effects, and a correlation between chemical structure and function continues.
Resumo:
Mixture modeling methodology was used to investigate interactions of sugar, oligofructose and inulin in papaya nectars as related to sensory liking and chemical characteristics. Mixing sugar and inulin and increasing the sugar proportion raised the liking of flavor and sweetness and the overall acceptability of papaya nectars. Addition of the three components, along with raising the sugar proportion, increased the ash and soluble solids content in papaya nectars. The internal preference mappings showed that all nectars with oligofructose and inulin were as well liked as nectar containing sugar alone, except for some formulations with lower quantities of sugar. Formulations with 6 g/100 g sugar and 6 g/100 g inulin, or with 8 g/100 g sugar, 2 g/100 g inulin and 2 g/100 g oligofructose, can be considered to be the best formulations to produce, with regard to sensory liking and adequacy of chemical parameters, besides all papaya nectars with addition of oligofructose and inulin can potentially be claimed as prebiotic. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Educação Sexual - FCLAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)