822 resultados para swd: Augmented Reality
Resumo:
This article presents a support on the remote interaction for utilization in augmented reality systems based on ARToolkit. It utilizes the multicast communication in order to improve the scalability of distributed environment. This support may be utilized in production of specific applications pointed to distance education, training and entertainment. The validity of support happened with the implementation of a prototype and realization of tests for communication latency analysis and frames per second rate. © 2007 IEEE.
Resumo:
Augmented Reality (AR) systems which use optical tracking with fiducial marker for registration have had an important role in popularizing this technology, since only a personal computer with a conventional webcam is required. However, in most these applications, the virtual elements are shown only in the foreground a real element does not occlude a virtual one. The method presented enables AR environments based on fiducial markers to support mutual occlusion between a real element and many virtual ones, according to the elements position (depth) in the environment. © 2012 IEEE.
Resumo:
This article purposes the ARBot, a system that has as main objective the presentation of concepts of logic for students of elementary and secondary education. The system was developed using the technology known as Augmented Reality (AR), which allows complement the actual environment where the user is, by adding virtual objects. In this scenario the RA created from a virtual game interface is used, through which cognitive challenges are presented. To solve these challenges, users must set up three-dimensional virtual characters using visual language. As a result it follows that, in a playful way, concepts of algorithms and programming are assimilated by users. In addition, the system enables two users to interact in a cooperative game mode. In cooperative mode, the system focuses on collaborative learning, since it allows users to jointly solve the cognitive challenge presented by the system.
Resumo:
[ES] In this paper we address the problem of inserting virtual content in a video sequence. The method we propose uses just image information. We perform primitive tracking, camera calibration, real and virtual camera synchronisation and finally rendering to insert the virtual content in the real video sequence. To simplify the calibration step we assume that cameras are mounted on a tripod (which is a common situation in practise). The primitive tracking procedure, which uses lines and circles as primitives, is performed by means of a CART (Classification and Regression Tree). Finally, the virtual and real camera synchronisation and rendering is performed using functions of OpenGL (Open Graphic Library). We have applied the method proposed to sport event scenarios, specifically, soccer matches. In order to illustrate its performance, it has been applied to real HD (High Definition) video sequences. The quality of the proposed method is validated by inserting virtual elements in such HD video sequence.
Resumo:
Nel 2011, circa 5 milioni di persone usavano regolarmente applicativi mobi-le basati su qualche forma di realtà aumentata. Secondo alcune previsioni entro il 2020 servizi che sfruttano questa tecnologia avranno una base di utenti che rasenta un settimo della popolazione mondiale, rendendo di fatto la realtà aumentata l’ottavo mezzo di comunicazione di massa dopo la stampa, l’audio registrato, il cinema, la radio, la televisione, internet ed infine i servizi multimediali mobile. La tesi si propone di illustrare le caratteristiche di questa tecnologia distinguendo varie tecniche e strumenti a disposizione degli sviluppatori per costruire l’esperienza di augmented reality. Entrando nel merito dello sviluppo software si analizza una architettura di riferimento proposta per sistemi di realtà aumentata e pattern per lo sviluppo dei diversi componenti. Infine vengono confrontati gli SDK oggi più diffusi cercando di evidenziarne caratteristiche comuni e peculiarità.
Resumo:
Image-guided, computer-assisted neurosurgery has emerged to improve localization and targeting, to provide a better anatomic definition of the surgical field, and to decrease invasiveness. Usually, in image-guided surgery, a computer displays the surgical field in a CT/MR environment, using axial, coronal or sagittal views, or even a 3D representation of the patient. Such a system forces the surgeon to look away from the surgical scene to the computer screen. Moreover, this kind of information, being pre-operative imaging, can not be modified during the operation, so it remains valid for guidance in the first stage of the surgical procedure, and mainly for rigid structures like bones. In order to solve the two constraints mentioned before, we are developing an ultrasoundguided surgical microscope. Such a system takes the advantage that surgical microscopy and ultrasound systems are already used in neurosurgery, so it does not add more complexity to the surgical procedure. We have integrated an optical tracking device in the microscope and an augmented reality overlay system with which we avoid the need to look away from the scene, providing correctly aligned surgical images with sub-millimeter accuracy. In addition to the standard CT and 3D views, we are able to track an ultrasound probe, and using a previous calibration and registration of the imaging, the image obtained is correctly projected to the overlay system, so the surgeon can always localize the target and verify the effects of the intervention. Several tests of the system have been already performed to evaluate the accuracy, and clinical experiments are currently in progress in order to validate the clinical usefulness of the system.
Resumo:
PURPOSE: The aim of this study is to implement augmented reality in real-time image-guided interstitial brachytherapy to allow an intuitive real-time intraoperative orientation. METHODS AND MATERIALS: The developed system consists of a common video projector, two high-resolution charge coupled device cameras, and an off-the-shelf notebook. The projector was used as a scanning device by projecting coded-light patterns to register the patient and superimpose the operating field with planning data and additional information in arbitrary colors. Subsequent movements of the nonfixed patient were detected by means of stereoscopically tracking passive markers attached to the patient. RESULTS: In a first clinical study, we evaluated the whole process chain from image acquisition to data projection and determined overall accuracy with 10 patients undergoing implantation. The described method enabled the surgeon to visualize planning data on top of any preoperatively segmented and triangulated surface (skin) with direct line of sight during the operation. Furthermore, the tracking system allowed dynamic adjustment of the data to the patient's current position and therefore eliminated the need for rigid fixation. Because of soft-part displacement, we obtained an average deviation of 1.1 mm by moving the patient, whereas changing the projector's position resulted in an average deviation of 0.9 mm. Mean deviation of all needles of an implant was 1.4 mm (range, 0.3-2.7 mm). CONCLUSIONS: The developed low-cost augmented-reality system proved to be accurate and feasible in interstitial brachytherapy. The system meets clinical demands and enables intuitive real-time intraoperative orientation and monitoring of needle implantation.
Resumo:
During endoscopic surgery, it is difficult to ascertain the anatomical landmarks once the anatomy is fiddled with or if the operating area is filled with blood. An augmented reality system will enhance the endoscopic view and further enable surgeons to view hidden critical structures or the results of preoperative planning.