997 resultados para surface parameterization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The map representation of an environment should be selected based on its intended application. For example, a geometrically accurate map describing the Euclidean space of an environment is not necessarily the best choice if only a small subset its features are required. One possible subset is the orientations of the flat surfaces in the environment, represented by a special parameterization of normal vectors called axes. Devoid of positional information, the entries of an axis map form a non-injective relationship with the flat surfaces in the environment, which results in physically distinct flat surfaces being represented by a single axis. This drastically reduces the complexity of the map, but retains important information about the environment that can be used in meaningful applications in both two and three dimensions. This thesis presents axis mapping, which is an algorithm that accurately and automatically estimates an axis map of an environment based on sensor measurements collected by a mobile platform. Furthermore, two major applications of axis maps are developed and implemented. First, the LiDAR compass is a heading estimation algorithm that compares measurements of axes with an axis map of the environment. Pairing the LiDAR compass with simple translation measurements forms the basis for an accurate two-dimensional localization algorithm. It is shown that this algorithm eliminates the growth of heading error in both indoor and outdoor environments, resulting in accurate localization over long distances. Second, in the context of geotechnical engineering, a three-dimensional axis map is called a stereonet, which is used as a tool to examine the strength and stability of a rock face. Axis mapping provides a novel approach to create accurate stereonets safely, rapidly, and inexpensively compared to established methods. The non-injective property of axis maps is leveraged to probabilistically describe the relationships between non-sequential measurements of the rock face. The automatic estimation of stereonets was tested in three separate outdoor environments. It is shown that axis mapping can accurately estimate stereonets while improving safety, requiring significantly less time and effort, and lowering costs compared to traditional and current state-of-the-art approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transfer coefficients for momentum and heat have been determined for 10 m neutral wind speeds (U-10n) between 0 and 12 m/s using data from the Surface of the Ocean, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments. The inertial dissipation method was applied to wind and pseudo virtual temperature spectra from a sonic anemometer, mounted on a platform (ship) which was moving through the turbulence held. Under unstable conditions the assumptions concerning the turbulent kinetic energy (TKE) budget appeared incorrect. Using a bulk estimate for the stability parameter, Z/L (where Z is the height and L is the Obukhov length), this resulted in anomalously low drag coefficients compared to neutral conditions. Determining Z/L iteratively, a low rate of convergence was achieved. It was concluded that the divergence of the turbulent transport of TKE was not negligible under unstable conditions. By minimizing the dependence of the calculated neutral drag coefficient on stability, this term was estimated at about -0.65Z/L. The resulting turbulent fluxes were then in close agreement with other studies at moderate wind speed. The drag and exchange coefficients for low wind speeds were found to be C-en x 10(3) = 2.79U(10n)(-1) + 0.66 (U-10n < 5.2 m/s), C-en x 10(3) = C-hn x 10(3) = 1.2 (U-10n greater than or equal to 5.2 m/s), and C-dn x 10(3) = 11.7U(10n)(-2) + 0.668 (U-10n < 5.5 m/s), which imply a rapid increase of the coefficient values as the wind decreased within the smooth flow regime. The frozen turbulence hypothesis and the assumptions of isotropy and an inertial subrange were found to remain valid at these low wind speeds for these shipboard measurements. Incorporation of a free convection parameterization had little effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A parameterization of mesoscale eddy fluxes in the ocean should be consistent with the fact that the ocean interior is nearly adiabatic. Gent and McWilliams have described a framework in which this can be approximated in L-coordinate primitive equation models by incorporating the effects of eddies on the buoyancy field through an eddy-induced velocity. It is also natural to base a parameterization on the simple picture of the mixing of potential vorticity in the interior and the mixing of buoyancy at the surface. The authors discuss the various constraints imposed by these two requirements and attempt to clarify the appropriate boundary conditions on the eddy-induced velocities at the surface. Quasigeostrophic theory is used as a guide to the simplest way of satisfying these constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given a 2manifold triangular mesh \(M \subset {\mathbb {R}}^3\), with border, a parameterization of \(M\) is a FACE or trimmed surface \(F=\{S,L_0,\ldots, L_m\}\) -- \(F\) is a connected subset or region of a parametric surface \(S\), bounded by a set of LOOPs \(L_0,\ldots ,L_m\) such that each \(L_i \subset S\) is a closed 1manifold having no intersection with the other \(L_j\) LOOPs -- The parametric surface \(S\) is a statistical fit of the mesh \(M\) -- \(L_0\) is the outermost LOOP bounding \(F\) and \(L_i\) is the LOOP of the ith hole in \(F\) (if any) -- The problem of parameterizing triangular meshes is relevant for reverse engineering, tool path planning, feature detection, redesign, etc -- Stateofart mesh procedures parameterize a rectangular mesh \(M\) -- To improve such procedures, we report here the implementation of an algorithm which parameterizes meshes \(M\) presenting holes and concavities -- We synthesize a parametric surface \(S \subset {\mathbb {R}}^3\) which approximates a superset of the mesh \(M\) -- Then, we compute a set of LOOPs trimming \(S\), and therefore completing the FACE \(F=\ {S,L_0,\ldots ,L_m\}\) -- Our algorithm gives satisfactory results for \(M\) having low Gaussian curvature (i.e., \(M\) being quasi-developable or developable) -- This assumption is a reasonable one, since \(M\) is the product of manifold segmentation preprocessing -- Our algorithm computes: (1) a manifold learning mapping \(\phi : M \rightarrow U \subset {\mathbb {R}}^2\), (2) an inverse mapping \(S: W \subset {\mathbb {R}}^2 \rightarrow {\mathbb {R}}^3\), with \ (W\) being a rectangular grid containing and surpassing \(U\) -- To compute \(\phi\) we test IsoMap, Laplacian Eigenmaps and Hessian local linear embedding (best results with HLLE) -- For the back mapping (NURBS) \(S\) the crucial step is to find a control polyhedron \(P\), which is an extrapolation of \(M\) -- We calculate \(P\) by extrapolating radial basis functions that interpolate points inside \(\phi (M)\) -- We successfully test our implementation with several datasets presenting concavities, holes, and are extremely nondevelopable -- Ongoing work is being devoted to manifold segmentation which facilitates mesh parameterization

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the surface profiles of a strip after rigid bodies with serrated (saw-teeth) surfaces indent the strip and are subsequently removed. Plane-strain conditions are assumed. This has application in roughness transfer of final metal forming process. The effects of the semi-angle of the teeth, the depth of indentation and the friction on the contact surface on the profile are considered.