979 resultados para super-resolution
Resumo:
Super-Resolution imaging techniques such as Fluorescent Photo-Activation Localisation Microscopy (FPALM) have created a powerful new toolkit for investigating living cells, however a simple platform for growing, trapping, holding and controlling the cells is needed before the approach can become truly widespread. We present a microfluidic device formed in polydimethylsiloxane (PDMS) with a fluidic design which traps cells in a high-density array of wells and holds them very still throughout the life cycle, using hydrodynamic forces only. The device meets or exceeds all the necessary criteria for FPALM imaging of Schizosaccharomyces pombe and is designed to remain flexible, robust and easy to use. © 2011 IEEE.
Resumo:
Multi-frame image super-resolution (SR) aims to utilize information from a set of low-resolution (LR) images to compose a high-resolution (HR) one. As it is desirable or essential in many real applications, recent years have witnessed the growing interest in the problem of multi-frame SR reconstruction. This set of algorithms commonly utilizes a linear observation model to construct the relationship between the recorded LR images to the unknown reconstructed HR image estimates. Recently, regularization-based schemes have been demonstrated to be effective because SR reconstruction is actually an ill-posed problem. Working within this promising framework, this paper first proposes two new regularization items, termed as locally adaptive bilateral total variation and consistency of gradients, to keep edges and flat regions, which are implicitly described in LR images, sharp and smooth, respectively. Thereafter, the combination of the proposed regularization items is superior to existing regularization items because it considers both edges and flat regions while existing ones consider only edges. Thorough experimental results show the effectiveness of the new algorithm for SR reconstruction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
SPIE
Resumo:
Neighbor embedding algorithm has been widely used in example-based super-resolution reconstruction from a single frame, which makes the assumption that neighbor patches embedded are contained in a single manifold. However, it is not always true for complicated texture structure. In this paper, we believe that textures may be contained in multiple manifolds, corresponding to classes. Under this assumption, we present a novel example-based image super-resolution reconstruction algorithm with clustering and supervised neighbor embedding (CSNE). First, a class predictor for low-resolution (LR) patches is learnt by an unsupervised Gaussian mixture model. Then by utilizing class label information of each patch, a supervised neighbor embedding is used to estimate high-resolution (HR) patches corresponding to LR patches. The experimental results show that the proposed method can achieve a better recovery of LR comparing with other simple schemes using neighbor embedding.
Resumo:
It was shown in previous papers that the resolution of a confocal scanning microscope can be significantly improved by measuring, for each scanning position, the full diffraction image and by inverting these data to recover the value of the object at the confocal point. In the present work, the authors generalize the data inversion procedure by allowing, for reconstructing the object at a given point, to make use of the data samples recorded at other scanning positions. This leads them to a family of generalized inversion formulae, either exact or approximate. Some previously known formulae are re-derived here as special cases in a particularly simple way.
Resumo:
For pt.I see ibid. vol.3, p.195 (1987). The authors have shown that the resolution of a confocal scanning microscope can be improved by recording the full image at each scanning point and then inverting the data. These analyses were restricted to the case of coherent illumination. They investigate, along similar lines, the incoherent case, which applies to fluorescence microscopy. They investigate the one-dimensional and two-dimensional square-pupil problems and they prove, by means of numerical computations of the singular value spectrum and of the impulse response function, that for a signal-to-noise ratio of, say 10%, it is possible to obtain an improvement of approximately 60% in resolution with respect to the conventional incoherent light confocal microscope. This represents a working bandwidth of 3.5 times the Rayleigh limit.
Resumo:
The past decade has seen numerous efforts to achieve imaging resolution beyond that of the Abbe-Rayleigh diffraction limit. The main direction of research alining to break this limit seeks to exploit the evanescent components containing fine detail of the electromagnetic field distribution at the Immediate proximity of the object. Here, we propose a solution that removes the need for evanescent fields. The object being imaged or stimulated with subwavelangth accuracy does not need to be In the immediate proximity of the superlens or field concentrator: an optical mask can be designed that creates constructive Interference of waves known as superoscillation, leading to a subwavelength focus of prescribed size and shape in a field of view beyond the evanescent fields, when illuminated by a monochromatic wave. Moreover, we demonstrate that such a mask may be used not only as a focusing device but also as a super-resolution imaging device.
Resumo:
We demonstrate that a quasi-periodic array of nanoholes in a metal screen can focus light into subwavelength spots in the far-field without contributions from evanescent fields. The subwavelength spots were observed with a conventional optical microscope and mapped to the far-field. We relate the formation of subwavelength light localizations in the far-field to the phenomenon of super-oscillations. This effect offers a new way to achieve subwavelength imaging, which differs from approaches based on the recovery of evanescent fields.
Resumo:
Super-resolution refers to the process of obtaining a high resolution image from one or more low resolution images. In this work, we present a novel method for the super-resolution problem for the limited case, where only one image of low resolution is given as an input. The proposed method is based on statistical learning for inferring the high frequencies regions which helps to distinguish a high resolution image from a low resolution one. These inferences are obtained from the correlation between regions of low and high resolution that come exclusively from the image to be super-resolved, in term of small neighborhoods. The Markov random fields are used as a model to capture the local statistics of high and low resolution data when they are analyzed at different scales and resolutions. Experimental results show the viability of the method.
Resumo:
An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos
Resumo:
In this paper, a new directionally adaptive, learning based, single image super resolution method using multiple direction wavelet transform, called Directionlets is presented. This method uses directionlets to effectively capture directional features and to extract edge information along different directions of a set of available high resolution images .This information is used as the training set for super resolving a low resolution input image and the Directionlet coefficients at finer scales of its high-resolution image are learned locally from this training set and the inverse Directionlet transform recovers the super-resolved high resolution image. The simulation results showed that the proposed approach outperforms standard interpolation techniques like Cubic spline interpolation as well as standard Wavelet-based learning, both visually and in terms of the mean squared error (mse) values. This method gives good result with aliased images also.
Resumo:
Super Resolution problem is an inverse problem and refers to the process of producing a High resolution (HR) image, making use of one or more Low Resolution (LR) observations. It includes up sampling the image, thereby, increasing the maximum spatial frequency and removing degradations that arise during the image capture namely aliasing and blurring. The work presented in this thesis is based on learning based single image super-resolution. In learning based super-resolution algorithms, a training set or database of available HR images are used to construct the HR image of an image captured using a LR camera. In the training set, images are stored as patches or coefficients of feature representations like wavelet transform, DCT, etc. Single frame image super-resolution can be used in applications where database of HR images are available. The advantage of this method is that by skilfully creating a database of suitable training images, one can improve the quality of the super-resolved image. A new super resolution method based on wavelet transform is developed and it is better than conventional wavelet transform based methods and standard interpolation methods. Super-resolution techniques based on skewed anisotropic transform called directionlet transform are developed to convert a low resolution image which is of small size into a high resolution image of large size. Super-resolution algorithm not only increases the size, but also reduces the degradations occurred during the process of capturing image. This method outperforms the standard interpolation methods and the wavelet methods, both visually and in terms of SNR values. Artifacts like aliasing and ringing effects are also eliminated in this method. The super-resolution methods are implemented using, both critically sampled and over sampled directionlets. The conventional directionlet transform is computationally complex. Hence lifting scheme is used for implementation of directionlets. The new single image super-resolution method based on lifting scheme reduces computational complexity and thereby reduces computation time. The quality of the super resolved image depends on the type of wavelet basis used. A study is conducted to find the effect of different wavelets on the single image super-resolution method. Finally this new method implemented on grey images is extended to colour images and noisy images