851 resultados para successive-approximation-register (SAR) analog-to-digital converters (ADC)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a wideband low-distortion sigmadelta analog-to-digital converter (ADC) for Wireless Local Area Network (WLAN) standard. The proposed converter makes use of low-distortion swing suppression SDM architecture which is highly suitable for low oversampling ratios to attain high linearity over a wide bandwidth. The modulator employs a 2-2 cascaded sigma-delta modulator with feedforward path with a single-bit quantizer in the first stage and 4-bit in the second stage. The modulator is designed in TSMC 0.18um CMOS technology and operates at 1.8V supply voltage. Simulation results show that, a peak SNDR of 57dB and a spurious free dynamic range (SFDR) of 66dB is obtained for a 10MHz signal bandwidth, and an oversampling ratio of 8.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An all-in-one version of a capacitively coupled contactless conductivity detector is introduced. The absence of moving parts (potentiometers and connectors) makes it compact (6.5 cm(3)) and robust. A local oscillator, working at 1.1 MHz, was optimized to use capillaries of id from 20 to 100 lam. Low noise circuitry and a high-resolution analog-to-digital converter (ADC) (21 bits effective) grant good sensitivities for capillaries and background electrolytes currently used in capillary electrophoresis. The fixed frequency and amplitude of the signal generator is a drawback that is compensated by the steady calibration curves for conductivity. Another advantage is the possibility of determining the inner diameter of a capillary by reading the ADC when air and subsequently water flow through the capillary. The difference of ADC reading may be converted into the inner diameter by a calibration curve. This feature is granted by the 21-bit ADC, which eliminates the necessity of baseline compensation by hardware. In a typical application, the limits of detection based on the 3 sigma criterion (without baseline filtering) were 0.6, 0.4, 0.3, 0.5, 0.6, and 0.8 mu mol/L for K(+), Ba(2+), Ca(2+), Na(+), Mg(2+), and Li(+), respectively, which is comparable to other high-quality implementations of a capacitively coupled contactless conductivity detector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Total Ionization Dose (TID) is traditionally measured by radiation sensitive FETs (RADFETs) that require a radiation hardened Analog-to-Digital Converter (ADC) stage. This work introduces a TID sensor based on a delay path whose propagation time is sensitive to the absorbed radiation. It presents the following advantages: it is a digital sensor able to be integrated in CMOS circuits and programmable systems such as FPGAs; it has a configurable sensitivity that allows to use this device for radiation doses ranging from very low to relatively high levels; its interface helps to integrate this sensor in a multidisciplinary sensor network; it is self-timed, hence it does not need a clock signal that can degrade its accuracy. The sensor has been prototyped in a 0.35μm technology, has an area of 0.047mm2, of which 22% is dedicated to measuring radiation, and an energy per conversion of 463pJ. Experimental irradiation tests have validated the correct response of the proposed TID sensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, the trend within the electronics industry is for the use of rapid and advanced simulation methodologies in association with synthesis toolsets. This paper presents an approach developed to support mixed-signal circuit design and analysis. The methodology proposed shows a novel approach to the problem of developing behvioural model descriptions of mixed-signal circuit topologies, by construction of a set of subsystems, that supports the automated mapping of MATLAB®/SIMULINK® models to structural VHDL-AMS descriptions. The tool developed, named MS 2SV, reads a SIMULINK® model file and translates it to a structural VHDL-AMS code. It also creates the file structure required to simulate the translated model in the System Vision™. To validate the methodology and the developed program, the DAC08, AD7524 and AD5450 data converters were studied and initially modelled in MATLAB®/ SIMULINK®. The VHDL-AMS code generated automatically by MS 2SV, (MATLAB®/SIMULINK® to System Vision™), was then simulated in the System Vision™. The simulation results show that the proposed approach, which is based on VHDL-AMS descriptions of the original model library elements, allows for the behavioural level simulation of complex mixed-signal circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analogue and digital techniques for linearization of non-linear input-output relationship of transducers are briefly reviewed. The condition required for linearizing a non-linear function y = f(x) using a non-linear analogue-to-digital converter, is explained. A simple technique to construct a non-linear digital-to-analogue converter, based on ' segments of equal digital interval ' is described. The technique was used to build an N-DAC which can be employed in a successive approximation or counter-ramp type ADC to linearize the non-linear transfer function of a thermistor-resistor combination. The possibility of achieving an order of magnitude higher accuracy in the measurement of temperature is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mixed-signal and analog design on a pre-diffused array is a challenging task, given that the digital array is a linear matrix arrangement of minimum-length transistors. To surmount this drawback a specific discipline for designing analog circuits over such array is required. An important novel technique proposed is the use of TAT (Trapezoidal Associations of Transistors) composite transistors on the semi-custom Sea-Of-Transistors (SOT) array. The analysis and advantages of TAT arrangement are extensively analyzed and demonstrated, with simulation and measurement comparisons to equivalent single transistors. Basic analog cells were also designed as well in full-custom and TAT versions in 1.0mm and 0.5mm digital CMOS technologies. Most of the circuits were prototyped in full-custom and TAT-based on pre-diffused SOT arrays. An innovative demonstration of the TAT technique is shown with the design and implementation of a mixed-signal analog system, i. e., a fully differential 2nd order Sigma-Delta Analog-to-Digital (A/D) modulator, fabricated in both full-custom and SOT array methodologies in 0.5mm CMOS technology from MOSIS foundry. Three test-chips were designed and fabricated in 0.5mm. Two of them are IC chips containing the full-custom and SOT array versions of a 2nd-Order Sigma-Delta A/D modulator. The third IC contains a transistors-structure (TAT and single) and analog cells placed side-by-side, block components (Comparator and Folded-cascode OTA) of the Sigma-Delta modulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, the trend within the electronics industry is for the use of rapid and advanced simulation methodologies in association with synthesis toolsets. This paper presents an approach developed to support mixed-signal circuit design and analysis. The methodology proposed shows a novel approach to the problem of developing behvioural model descriptions of mixed-signal circuit topologies, by construction of a set of subsystems, that supports the automated mapping of MATLAB (R)/SINIULINK (R) models to structural VHDL-AMS descriptions. The tool developed, named (MSSV)-S-2, reads a SIMULINK (R) model file and translates it to a structural VHDL-AMS code. It also creates the file structure required to simulate the translated model in the SystemVision (TM). To validate the methodology and the developed program, the DAC08, AD7524 and AD5450 data converters were studied and initially modelled in MATLAB (R)/SIMULINK (R). The VHDL-AMS code generated automatically by (MSSV)-S-2, (MATLAB (R)/SIMULINK (R) to SystemVision (TM)), was then simulated in the SystemVision (TM). The simulation results show that the proposed approach, which is based on VHDL-AMS descriptions of the original model library elements, allows for the behavioural level simulation of complex mixed-signal circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene, that is a monolayer of carbon atoms arranged in a honeycomb lattice, has been isolated only recently from graphite. This material shows very attractive physical properties, like superior carrier mobility, current carrying capability and thermal conductivity. In consideration of that, graphene has been the object of large investigation as a promising candidate to be used in nanometer-scale devices for electronic applications. In this work, graphene nanoribbons (GNRs), that are narrow strips of graphene, for which a band-gap is induced by the quantum confinement of carriers in the transverse direction, have been studied. As experimental GNR-FETs are still far from being ideal, mainly due to the large width and edge roughness, an accurate description of the physical phenomena occurring in these devices is required to have valuable predictions about the performance of these novel structures. A code has been developed to this purpose and used to investigate the performance of 1 to 15-nm wide GNR-FETs. Due to the importance of an accurate description of the quantum effects in the operation of graphene devices, a full-quantum transport model has been adopted: the electron dynamics has been described by a tight-binding (TB) Hamiltonian model and transport has been solved within the formalism of the non-equilibrium Green's functions (NEGF). Both ballistic and dissipative transport are considered. The inclusion of the electron-phonon interaction has been taken into account in the self-consistent Born approximation. In consideration of their different energy band-gap, narrow GNRs are expected to be suitable for logic applications, while wider ones could be promising candidates as channel material for radio-frequency applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Circuits for realizing serial quaternary-to-analogue converters (QACs) are proposed in this paper. Three techniques are presented based on Shannon-Rack decoder, sample/hold serial digital-to-analogue converter and cyclic digital-to-analogue converter. Circuits for the generation of control signals and the multiplexer required in the realization of the QACs are also described. A comparison of the three methods is made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of computing the level-crossings of an analog signal from samples measured on a uniform grid. Such a problem is important, for example, in multilevel analog-to-digital (A/D) converters. The first operation in such sampling modalities is a comparator, which gives rise to a bilevel waveform. Since bilevel signals are not bandlimited, measuring the level-crossing times exactly becomes impractical within the conventional framework of Shannon sampling. In this paper, we propose a novel sub-Nyquist sampling technique for making measurements on a uniform grid and thereby for exactly computing the level-crossing times from those samples. The computational complexity of the technique is low and comprises simple arithmetic operations. We also present a finite-rate-of-innovation sampling perspective of the proposed approach and also show how exponential splines fit in naturally into the proposed sampling framework. We also discuss some concrete practical applications of the sampling technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determine the optimal allocation of power between the analog and digital sections of an RF receiver while meeting the BER constraint. Unlike conventional RF receiver designs, we treat the SNR at the output of the analog front end (SNRAD) as a design parameter rather than a specification to arrive at this optimal allocation. We first determine the relationship of the SNRAD to the resolution and operating frequency of the digital section. We then use power models for the analog and digital sections to solve the power minimization problem. As an example, we consider a 802.15.4 compliant low-IF receiver operating at 2.4 GHz in 0.13 μm technology with 1.2 V power supply. We find that the overall receiver power is minimized by having the analog front end provide an SNR of 1.3dB and the ADC and the digital section operate at 1-bit resolution with 18MHz sampling frequency while achieving a power dissipation of 7mW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines a complete design framework for a real-time, autonomous system with specialized VLSI hardware for computing 3-D camera motion. In the proposed architecture, the first step is to determine point correspondences between two images. Two processors, a CCD array edge detector and a mixed analog/digital binary block correlator, are proposed for this task. The report is divided into three parts. Part I covers the algorithmic analysis; part II describes the design and test of a 32$\time $32 CCD edge detector fabricated through MOSIS; and part III compares the design of the mixed analog/digital correlator to a fully digital implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents initial results of evaluating suitability of the conventional two-tone CW passive intermodulation (PIM) test for characterization of modulated signal distortion by passive nonlinearities in base station antennas and RF front-end. A comprehensive analysis of analog and digitally modulated waveforms in the transmission lines with weak distributed nonlinearity has been performed using the harmonic balance analysis and X-parameters in Advanced Design System (ADS) simulator. The nonlinear distortion metrics used in the conventional two-tone CW PIM test have been compared with the respective spectral metrics applied to the modulated waveforms, such as adjacent channel power ratio (ACPR) and error vector magnitude (EVM). It is shown that the results of two-tone CW PIM tests are consistent with the metrics used for assessment of signal integrity of both analog and digitally modulated waveforms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Passive intermodulation (PIM) often limits the performance of communication systems with analog and digitally-modulated signals and especially of systems supporting multiple carriers. Since the origins of the apparently multiple physical sources of nonlinearity causing PIM are not fully understood, the behavioral models are frequently used to describe the process of PIM generation. In this paper a polynomial model of memoryless nonlinearity is deduced from PIM measurements of a microstrip line with distributed nonlinearity with two-tone CW signals. The analytical model of nonlinearity is incorporated in Keysight Technology’s ADS simulator to evaluate the metrics of signal fidelity in the receive band for analog and digitally-modulated signals. PIM-induced distortion and cross-band interference with modulated signals are compared to those with two-tone CW signals. It is shown that conventional metrics can be applied to quantify the effect of distributed nonlinearities on signal fidelity. It is found that the two-tone CW test provides a worst-case estimate of cross-band interference for two-carrier modulated signals whereas with a three-carrier signal PIM interference in the receive band is noticeably overestimated. The simulated constellation diagrams for QPSK signals demonstrate that PIM interference exhibits the distinctive signatures of correlated distortion and this indicates that there are opportunities for mitigating PIM interference and that PIM interference cannot be treated as noise. One of the interesting results is that PIM distortion on a transmission line results in asymmetrical regrowth of output PIM interference for modulated signals.