937 resultados para structure-from-motion
Resumo:
An automatic machine learning strategy for computing the 3D structure of monocular images from a single image query using Local Binary Patterns is presented. The 3D structure is inferred through a training set composed by a repository of color and depth images, assuming that images with similar structure present similar depth maps. Local Binary Patterns are used to characterize the structure of the color images. The depth maps of those color images with a similar structure to the query image are adaptively combined and filtered to estimate the final depth map. Using public databases, promising results have been obtained outperforming other state-of-the-art algorithms and with a computational cost similar to the most efficient 2D-to-3D algorithms.
Resumo:
ACKNOWLEDGMENTS MW and RVD have been supported by the German Federal Ministry for Education and Research (BMBF) via the Young Investigators Group CoSy-CC2 (grant no. 01LN1306A). JFD thanks the Stordalen Foundation and BMBF (project GLUES) for financial support. JK acknowledges the IRTG 1740 funded by DFG and FAPESP. MT Gastner is acknowledged for providing his data on the airline, interstate, and Internet network. P Menck thankfully provided his data on the Scandinavian power grid. We thank S Willner on behalf of the entire zeean team for providing the data on the world trade network. All computations have been performed using the Python package pyunicorn [41] that is available at https://github.com/pik-copan/pyunicorn.
Resumo:
Lines of transgenic tobacco have been generated that are transformed with either the wild-type peanut peroxidase prxPNC2 cDNA, driven by the CaMV3 5S promoter (designated 35S::prxPNC2-WT) or a mutated PNC2 cDNA in which the asparagine residue (Asn(189)) associated with the point of glycan attachment (Asn(189)) has been replaced with alanine (designated 35S::prxPNC2-M). PCR, using genomic DNA as template, has confirmed the integration of the 35S::prxPNC2-WT and 35::prxPNC2-M constructs into the tobacco genome, and western analysis using anti-PNC2 antibodies has revealed that the prxPNC2-WT protein product (PNC2-WT) accumulates with a molecular mass of 34,670 Da, while the prxPNC2-M protein product (PNC2-M) accumulates with a molecular mass of 32,600 Da. Activity assays have shown that both PNC2-WT and PNC2-M proteins accumulate preferentially in the ionically-bound cell wall fraction, with a significantly higher relative accumulation of the PNC2-WT isoenzyme in the ionically-bound fraction when compared with the PNC2-M isoform. Kinetic analysis of the partially purified PNC2-WT isozyme revealed an affinity constant (apparent K-m) of 11.2 mM for the reductor substrate guaiacol and 1.29 mM for H2O2, while values of 11.9 mM and 1.12 mM were determined for the PNC2-M isozyme. A higher Arrenhius activation energy (E,,) was determined for the PNC2-M isozyme (22.9 kJ mol(-1)), when compared with the PNC2-WT isozyme (17.6 kJ mol(-1)), and enzyme assays have determined that the absence of the glycan influences the thermostability of the PNC2-M isozyme. These results are discussed with respect to the proposed roles of N-linked glycans attached to plant peroxidases. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We consider the problem of illusory or artefactual structure from the visualisation of high-dimensional structureless data. In particular we examine the role of the distance metric in the use of topographic mappings based on the statistical field of multidimensional scaling. We show that the use of a squared Euclidean metric (i.e. the SSTRESs measure) gives rise to an annular structure when the input data is drawn from a high-dimensional isotropic distribution, and we provide a theoretical justification for this observation.
Resumo:
This thesis explores the process of developing a principled approach for translating a model of mental-health risk expertise into a probabilistic graphical structure. Probabilistic graphical structures can be a combination of graph and probability theory that provide numerous advantages when it comes to the representation of domains involving uncertainty, domains such as the mental health domain. In this thesis the advantages that probabilistic graphical structures offer in representing such domains is built on. The Galatean Risk Screening Tool (GRiST) is a psychological model for mental health risk assessment based on fuzzy sets. In this thesis the knowledge encapsulated in the psychological model was used to develop the structure of the probability graph by exploiting the semantics of the clinical expertise. This thesis describes how a chain graph can be developed from the psychological model to provide a probabilistic evaluation of risk that complements the one generated by GRiST’s clinical expertise by the decomposing of the GRiST knowledge structure in component parts, which were in turned mapped into equivalent probabilistic graphical structures such as Bayesian Belief Nets and Markov Random Fields to produce a composite chain graph that provides a probabilistic classification of risk expertise to complement the expert clinical judgements
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Developing a probabilistic graphical structure from a model of mental-health clinical risk expertise
Resumo:
This paper explores the process of developing a principled approach for translating a model of mental-health risk expertise into a probabilistic graphical structure. The Galatean Risk Screening Tool [1] is a psychological model for mental health risk assessment based on fuzzy sets. This paper details how the knowledge encapsulated in the psychological model was used to develop the structure of the probability graph by exploiting the semantics of the clinical expertise. These semantics are formalised by a detailed specification for an XML structure used to represent the expertise. The component parts were then mapped to equivalent probabilistic graphical structures such as Bayesian Belief Nets and Markov Random Fields to produce a composite chain graph that provides a probabilistic classification of risk expertise to complement the expert clinical judgements. © Springer-Verlag 2010.
Resumo:
This paper describes a novel algorithm for tracking the motion of the urethra from trans-perineal ultrasound. Our work is based on the structure-from-motion paradigm and therefore handles well structures with ill-defined and partially missing boundaries. The proposed approach is particularly well-suited for video sequences of low resolution and variable levels of blurriness introduced by anatomical motion of variable speed. Our tracking method identifies feature points on a frame by frame basis using the SURF detector/descriptor. Inter-frame correspondence is achieved using nearest-neighbor matching in the feature space. The motion is estimated using a non-linear bi-quadratic model, which adequately describes the deformable motion of the urethra. Experimental results are promising and show that our algorithm performs well when compared to manual tracking.
Resumo:
This paper describes a novel algorithm for tracking the motion of the urethra from trans-perineal ultrasound. Our work is based on the structure-from-motion paradigm and therefore handles well structures with ill-defined and partially missing boundaries. The proposed approach is particularly well-suited for video sequences of low resolution and variable levels of blurriness introduced by anatomical motion of variable speed. Our tracking method identifies feature points on a frame by frame basis using the SURF detector/descriptor. Inter-frame correspondence is achieved using nearest-neighbor matching in the feature space. The motion is estimated using a non-linear bi-quadratic model, which adequately describes the deformable motion of the urethra. Experimental results are promising and show that our algorithm performs well when compared to manual tracking.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Ramo de Sistemas Autónomos
Resumo:
Aquest projecte resol les fases inicials d'un altre projecte més gran que té com a objectiu la conversió automàtica de seqüències d'imatges a 3D. El projecte s'ha centrat en la reconstrucció calibrada de col·leccions d'imatges mitjançant la tècnica anomenada structure from motion. Aquesta tècnica forma part de l'àmbit de la visió per computador i s'utilitza per obtenir la posició i l'orientació de les diferents càmeres juntament amb una reconstrucció 3D de l'escena en forma de núvol de punts.
Estudi i implementació d’un mètode de reconstrucció 3D basat en SfM i registre de vistes 3D parcials
Resumo:
Aquest projecte es basarà en reconstruir una imatge 3D gran a partir d’una seqüència d’imatges 2D capturades per una càmera. Ens centrem en l’estudi de les bases matemàtiques de la visió per computador així com en diferents mètodes emprats en la reconstrucció 3D d’imatges. Per portar a terme aquest estudi s’utilitza la plataforma de desenvolupament MatLab ja que permet tractar operacions matemàtiques, imatges i matrius de gran tamany amb molta senzillesa, rapidesa i eficiència, per aquesta raó s’usa en moltes recerques sobre aquest tema. El projecte aprofundeix en el tema descrit anteriorment estudiant i implementant un mètode que consisteix en aplicar Structure From Motion (SFM) a pocs frames seguits obtinguts d’una seqüència d’imatges 2D per crear una reconstrucció 3D. Quan s’han creat dues reconstruccions 3D consecutives i fent servir un frame com a mínim en comú entre elles, s’aplica un mètode de registre d’estructures 3D, l’Iterative Closest Point (ICP), per crear una reconstrucció 3D més gran a través d’unir les diferents reconstruccions obtingudes a partir de SfM. El mètode consisteix en anar repetint aquestes operacions fins al final dels frames per poder aconseguir una reconstrucció 3D més gran que les petites imatges que s’aconsegueixen a través de SfM. A la Figura 1 es pot veure un esquema del procés que es segueix. Per avaluar el comportament del mètode, utilitzem un conjunt de seqüències sintètiques i un conjunt de seqüències reals obtingudes a partir d’una càmera. L’objectiu final d’aquest projecte és construir una nova toolbox de MatLab amb tots els mètodes per crear reconstruccions 3D grans per tal que sigui possible tractar amb facilitat aquest problema i seguir-lo desenvolupant en un futur