993 resultados para structure elucidation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbohydrates are a complex group of biomolecules with a high structural diversity. Their almost omnipresent occurrence has generated a broad field of research in both biology and chemistry. This thesis focuses on three different aspects of carbohydrate chemistry, synthesis, structure elucidation and the conformational analysis of carbohydrates. The first paper describes the synthesis of a penta- and a tetrasaccharide related to the highly branched capsular polysaccharide from Streptococcus pneumoniae type 37. In the second paper, the structure of the O-antigenic repeating unit from the lipopolysaccharide of E. coli 396/C1 was determined along with indications of the structure of the biological repeating unit. In addition, its structural and immunological relationship with E. coli O126 is discussed. In the third paper, partially protected galactopyranosides were examined to clarify the origin of an intriguing 4JHO,H coupling, where a W-mediated coupling pathway was found to operate. In the fourth paper, the conformation of methyl a-cellobioside is studied with a combination of molecular dynamics simulations and NMR spectroscopy. In addition to the expected syn-conformation, detection and quantification of anti-ø and anti-ψ conformers was also possible.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crystallization and determination of the high resolution three-dimensional structure of the β2-adrenergic receptor in 2007 was followed by structure elucidation of a number of other receptors, including those for neurotensin and glucagon. These major advances foster the understanding of structure-activity relationship of these receptors and structure-based rational design of new ligands having more predictable activity. At present, structure determination of gut hormone receptors in complex with their ligands (natural, synthetic) and interacting signalling proteins, for example, G-proteins, arrestins, represents a challenge which promises to revolutionize gut hormone endocrinonology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent developments in analytical technologies have driven significant advances in lipid science. The sensitivity and selectivity of modern mass spectrometers can now provide for the detection and even quantification of many hundreds of lipids in a single analysis. In parallel, increasing evidence from structural biology suggests that a detailed knowledge of lipid molecular structure including carbon-carbon double bond position, stereochemistry and acyl chain regiochemistry is required to fully appreciate the biochemical role(s) of individual lipids. Here we review the capabilities and limitations of tandem mass spectrometry to provide this level of structural specificity in the analysis of lipids present in complex biological extracts. In particular, we focus on the capabilities of a novel technology termed ozone-induced dissociation to identify the position (s) of double bonds in unsaturated lipids and discuss its possible role in efforts to develop workflows that provide for complete structure elucidation of lipids by mass spectrometry alone: so-called top-down lipidomics. This article is part of a Special Issue entitled: Lipodomics and Imaging Mass Spectrom. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The critical, and often most difficult, step in structure elucidation of diverse classes of natural peptides is the determination of correct disulfide pairing between multiple cysteine residues. Here, we present a direct mass spectrometric analytical methodology for the determination of disulfide pairing. Protonated peptides, having multiple disulfide bonds, fragmented under collision induced dissociation (CID) conditions and preferentially cleave along the peptide backbone, with occasional disulfide fragmentation either by C-beta-S bond cleavage through H-alpha abstraction to yield dehydroalanine and cysteinepersulfide, or by S-S bond cleavage through H-beta abstraction to yield the thioaldehyde and cysteine. Further fragmentation of the initial set of product ions (MSn) yields third and fourth generation fragment ions, permitting a distinction between the various possible disulfide bonded structures. This approach is illustrated by establishing cysteine pairing patterns in five conotoxins containing two disulfide bonds. The methodology is extended to the Conus araneosus peptides An 446 and Ar1430, two 14 residue sequences containing 3 disulfide bonds. A distinction between 15 possible disulfide pairing schemes becomes possible using direct mass spectral fragmentation of the native peptides together with fragmentation of enzymatically nicked peptides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paramagnetic, or open-shell, systems are often encountered in the context of metalloproteins, and they are also an essential part of molecular magnets. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for chemical structure elucidation, but for paramagnetic molecules it is substantially more complicated than in the diamagnetic case. Before the present work, the theory of NMR of paramagnetic molecules was limited to spin-1/2 systems and it did not include relativistic corrections to the hyperfine effects. It also was not systematically expandable. --- The theory was first expanded by including hyperfine contributions up to the fourth power in the fine structure constant α. It was then reformulated and its scope widened to allow any spin state in any spatial symmetry. This involved including zero-field splitting effects. In both stages the theory was implemented into a separate analysis program. The different levels of theory were tested by demonstrative density functional calculations on molecules selected to showcase the relative strength of new NMR shielding terms. The theory was also tested in a joint experimental and computational effort to confirm assignment of 11 B signals. The new terms were found to be significant and comparable with the terms in the earlier levels of theory. The leading-order magnetic-field dependence of shielding in paramagnetic systems was formulated. The theory is now systematically expandable, allowing for higher-order field dependence and relativistic contributions. The prevailing experimental view of pseudocontact shift was found to be significantly incomplete, as it only includes specific geometric dependence, which is not present in most of the new terms introduced here. The computational uncertainty in density functional calculations of the Fermi contact hyperfine constant and zero-field splitting tensor sets a limit for quantitative prediction of paramagnetic shielding for now.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isolation and structure elucidation of kiritiquinone, a new benzoquinone 2 5 dihydroxy-6-methyl 3 (hemeos 16-enyl)-1 4 benzoquinone from the frutis of Masca indica (Roxb) A DC is described

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PDB Goodies is a web-based graphical user interface (GUI) to manipulate the Protein Data Bank file containing the three-dimensional atomic coordinates of protein structures. The program also allows users to save the manipulated three-dimensional atomic coordinate file on their local client system. These fragments are used in various stages of structure elucidation and analysis. This software is incorporated with all the three-dimensional protein structures available in the Protein Data Bank, which presently holds approximately 18 000 structures. In addition, this program works on a three-dimensional atomic coordinate file (Protein Data Bank format) uploaded from the client machine. The program is written using CGI/PERL scripts and is platform independent. The program PDB Goodies can be accessed over the World Wide Web at http:// 144.16.71.11/pdbgoodies/.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports, the Laser Induced Breakdown Spectroscopy (LIBS) studies and structure elucidation of compounds isolated from the fruit extract of Moringa oleifera and also deals with their possible effects on some bacterial strains viz. Staphylococcus aureus, Klebsiella pneumonia, Escherichia coli and Pseudomonas aeruginosa. The extract was found to be active against all four microorganisms used. Extent of inhibitory effect of extract was assessed at different concentrations of 25, 50, 75 mg/ml by measuring diameter of inhibition zone (DIZ). Our results clearly showed that the 75 mg/ml concentration of the extract had 14, 12 and 18 mm of the DIZ against Staphylococcus aureus, Klebsiella pneumonia and Pseudomonas aeruginosa and 14 mm with 50 mg/ml concentration against Escherichia coli. The results were compared with the standard antibiotic `ampicillin' of 1 mg/ml concentration. LIBS was recorded with high power pulsed laser beam from Nd: YAG Laser (Continuum Surelite III-10), focused on the surface of the material, which was in liquid form, to generate plasma on the surface of the sample. LIBS data clearly demonstrate the presence of trace elements, magnesium and iron, in high concentration in the extract. Whereas, from the phytochemical profile reveals the presence of two new compounds, S-ethyl-N-{4-[(alpha-L-rhamnosyloxy) benzyl]} thiocarbamate and 2-acetoxy {4-[(2',3',4'-tri-O-acetyl-alpha-L-rhamnosyloxy) benzyl]} acetonitrile as the major constituents. This study is the first report on synergetic effect of the phytoconstituents and certain set of elements present in their defined role in bacterial management against different bacterial strains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomolecular structure elucidation is one of the major techniques for studying the basic processes of life. These processes get modulated, hindered or altered due to various causes like diseases, which is why biomolecular analysis and imaging play an important role in diagnosis, treatment prognosis and monitoring. Vibrational spectroscopy (IR and Raman), which is a molecular bond specific technique, can assist the researcher in chemical structure interpretation. Based on the combination with microscopy, vibrational microspectroscopy is currently emerging as an important tool for biomedical research, with a spatial resolution at the cellular and sub-cellular level. These techniques offer various advantages, enabling label-free, biomolecular fingerprinting in the native state. However, the complexity involved in deciphering the required information from a spectrum hampered their entry into the clinic. Today with the advent of automated algorithms, vibrational microspectroscopy excels in the field of spectropathology. However, researchers should be aware of how quantification based on absolute band intensities may be affected by instrumental parameters, sample thickness, water content, substrate backgrounds and other possible artefacts. In this review these practical issues and their effects on the quantification of biomolecules will be discussed in detail. In many cases ratiometric analysis can help to circumvent these problems and enable the quantitative study of biological samples, including ratiometric imaging in 1D, 2D and 3D. We provide an extensive overview from the recent scientific literature on IR and Raman band ratios used for studying biological systems and for disease diagnosis and treatment prognosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is important to detect the aromaticity of structures during the process of structure elucidation and output. In this paper, an alogrithm was proposed to detect the aromaticity of structures by the use of algorithm on ring identification. The results show that it could be used to identify most of the aromatic structure. It have been used as constraints of Expert System on Elucidation Structure of Organic Compounds(ESESOC) and a good result has been achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. In this paper, an algorithm was developed by the all-paths topological symmetry algorithm to build the automorphism group of a chemical graph. A comparison of several topological symmetry algorithms reveals that the all-paths algorithm (APA) could yield the correct class of a chemical graph. It lays a foundation for the ESESOC system in computer-aided structure elucidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Procedures that allow the realization of resonance electron capture (REC) mode on a commercial triple-quadrupole mass spectrometer, after some simple modifications, are described, REC mass spectrometry (MS) and tandem mass spectrometry (MS/MS) experiments were performed and spectra for some compounds were recorded. In particular, the charge-remote fragmentation (CRF) spectra of [M - H](-) ions of docosanoic and docosenoic acids under low-energy collisionally activated dissociation (CAD) conditions were obtained, and showed that there were no significant differences for [M - H](-) ions produced at different resonances (i,e. for [M - H](-) ions with different structures). This observation was explained on the basis of results obtained from deuterium-labeled fatty acids, which showed that different CRF ions (but with the same m/z value in the absence of labels) could be produced by different mechanisms, and all of them were obviously realized under CAD conditions that made spectra practically indistinguishable. The other example, which compared the REC-MS/MS spectrum of [M - H](-) ions and EI-MS/MS spectrum of M+. ions of daidzein, demonstrated the potential of the REC-MS/MS technique for more complex structure elucidation. Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It's important to identify ring in the process of structure elucidation. In this paper, all rings and the smallest set of smallest ring(SSSR) of structure are obtained from two-dimensional connection table. The results are satisfactory by using this algorithm in ESESOC expert system as constraint.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resonance electron capture mass spectrometry, in which an additional information coordinate, the energy of electron capture, is applied, has a high sensitivity and a high specificity. It is extensively used to study the structure elucidation, the mechanism of ion formation and the detection, identification and quantification of organic substances in mixture.