948 resultados para stacked generalization
Resumo:
Given an elliptic curve E and a finite subgroup G, V ́lu’s formulae concern to a separable isogeny IG : E → E ′ with kernel G. In particular, for a point P ∈ E these formulae express the first elementary symmetric polynomial on the abscissas of the points in the set P + G as the difference between the abscissa of IG (P ) and the first elementary symmetric polynomial on the abscissas of the nontrivial points of the kernel G. On the other hand, they express Weierstraß coefficients of E ′ as polynomials in the coefficients of E and two additional parameters: w0 = t and w1 = w. We generalize this by defining parameters wn for all n ≥ 0 and giving analogous formulae for all the elementary symmetric polynomials and the power sums on the abscissas of the points in P +G. Simultaneously, we obtain an efficient way of performing computations concerning the isogeny when G is a rational group.
Resumo:
Aim: Modelling species at the assemblage level is required to make effective forecast of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (MEM), or by stacking of individual species distribution models (S-SDMs). To obtain more realistic predictions of species assemblages, the SESAM framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a "Probability ranking" rule based on species richness predictions and rough probabilities from SDMs, and a "Trait range" rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area and seed mass) to constraint a pool of environmentally filtered species from binary SDMs predictions. Results: We showed that all independent constraints expectedly contributed to reduce species richness overprediction. Only the "Probability ranking" rule allowed slightly but significantly improving predictions of community composition. Main conclusion: We tested various ways to implement the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further improving the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.
Resumo:
Stochastic learning processes for a specific feature detector are studied. This technique is applied to nonsmooth multilayer neural networks requested to perform a discrimination task of order 3 based on the ssT-block¿ssC-block problem. Our system proves to be capable of achieving perfect generalization, after presenting finite numbers of examples, by undergoing a phase transition. The corresponding annealed theory, which involves the Ising model under external field, shows good agreement with Monte Carlo simulations.
Resumo:
The objective of this study was to investigate the phenomenon of learning generalization of a specific skill of auditory temporal processing (temporal order detection) in children with dyslexia. The frequency order discrimination task was applied to children with dyslexia and its effect after training was analyzed in the same trained task and in a different task (duration order discrimination) involving the temporal order discrimination too. During study 1, one group of subjects with dyslexia (N = 12; mean age = 10.9 ± 1.4 years) was trained and compared to a group of untrained dyslexic children (N = 28; mean age = 10.4 ± 2.1 years). In study 2, the performance of a trained dyslexic group (N = 18; mean age = 10.1 ± 2.1 years) was compared at three different times: 2 months before training, at the beginning of training, and at the end of training. Training was carried out for 2 months using a computer program responsible for training frequency ordering skill. In study 1, the trained group showed significant improvement after training only for frequency ordering task compared to the untrained group (P < 0.001). In study 2, the children showed improvement in the last interval in both frequency ordering (P < 0.001) and duration ordering (P = 0.01) tasks. These results showed differences regarding the presence of learning generalization of temporal order detection, since there was generalization of learning in only one of the studies. The presence of methodological differences between the studies, as well as the relationship between trained task and evaluated tasks, are discussed.
Resumo:
A generalization to the BTK theory is developed based on the fact that the quasiparticle lifetime is finite as a result of the damping caused by the interactions. For this purpose, appropriate self-energy expressions and wave functions are inserted into the strong coupling version of the Bogoliubov equations and subsequently, the coherence factors are computed. By applying the suitable boundary conditions to the case of a normal-superconducting interface, the probability current densities for the Andreev reflection, the normal reflection, the transmission without branch crossing and the transmission with branch crossing are determined. Accordingly the electric current and the differential conductance curves are calculated numerically for Nb, Pb, and Pb0.9Bi0.1 alloy. The generalization of the BTK theory by including the phenomenological damping parameter is critically examined. The observed differences between our approach and the phenomenological approach are investigated by the numerical analysis.
Resumo:
Les tâches de vision artificielle telles que la reconnaissance d’objets demeurent irrésolues à ce jour. Les algorithmes d’apprentissage tels que les Réseaux de Neurones Artificiels (RNA), représentent une approche prometteuse permettant d’apprendre des caractéristiques utiles pour ces tâches. Ce processus d’optimisation est néanmoins difficile. Les réseaux profonds à base de Machine de Boltzmann Restreintes (RBM) ont récemment été proposés afin de guider l’extraction de représentations intermédiaires, grâce à un algorithme d’apprentissage non-supervisé. Ce mémoire présente, par l’entremise de trois articles, des contributions à ce domaine de recherche. Le premier article traite de la RBM convolutionelle. L’usage de champs réceptifs locaux ainsi que le regroupement d’unités cachées en couches partageant les même paramètres, réduit considérablement le nombre de paramètres à apprendre et engendre des détecteurs de caractéristiques locaux et équivariant aux translations. Ceci mène à des modèles ayant une meilleure vraisemblance, comparativement aux RBMs entraînées sur des segments d’images. Le deuxième article est motivé par des découvertes récentes en neurosciences. Il analyse l’impact d’unités quadratiques sur des tâches de classification visuelles, ainsi que celui d’une nouvelle fonction d’activation. Nous observons que les RNAs à base d’unités quadratiques utilisant la fonction softsign, donnent de meilleures performances de généralisation. Le dernière article quand à lui, offre une vision critique des algorithmes populaires d’entraînement de RBMs. Nous montrons que l’algorithme de Divergence Contrastive (CD) et la CD Persistente ne sont pas robustes : tous deux nécessitent une surface d’énergie relativement plate afin que leur chaîne négative puisse mixer. La PCD à "poids rapides" contourne ce problème en perturbant légèrement le modèle, cependant, ceci génère des échantillons bruités. L’usage de chaînes tempérées dans la phase négative est une façon robuste d’adresser ces problèmes et mène à de meilleurs modèles génératifs.
Resumo:
Ce mémoire s’applique à étudier d’abord, dans la première partie, la mesure de Mahler des polynômes à une seule variable. Il commence en donnant des définitions et quelques résultats pertinents pour le calcul de telle hauteur. Il aborde aussi le sujet de la question de Lehmer, la conjecture la plus célèbre dans le domaine, donne quelques exemples et résultats ayant pour but de résoudre la question. Ensuite, il y a l’extension de la mesure de Mahler sur les polynômes à plusieurs variables, une démarche semblable au premier cas de la mesure de Mahler, et le sujet des points limites avec quelques exemples. Dans la seconde partie, on commence par donner des définitions concernant un ordre supérieur de la mesure de Mahler, et des généralisations en passant des polynômes simples aux polynômes à plusieurs variables. La question de Lehmer existe aussi dans le domaine de la mesure de Mahler supérieure, mais avec des réponses totalement différentes. À la fin, on arrive à notre objectif, qui sera la démonstration de la généralisation d’un théorème de Boyd-Lawton, ce dernier met en évidence une relation entre la mesure de Mahler des polynômes à plusieurs variables avec la limite de la mesure de Mahler des polynômes à une seule variable. Ce résultat a des conséquences en termes de la conjecture de Lehmer et sert à clarifier la relation entre les valeurs de la mesure de Mahler des polynômes à une variable et celles des polynômes à plusieurs variables, qui, en effet, sont très différentes en nature.
Resumo:
Student’s t-distribution has found various applications in mathematical statistics. One of the main properties of the t-distribution is to converge to the normal distribution as the number of samples tends to infinity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution function with four free parameters and show that it converges to the normal distribution again. We provide a comprehensive treatment of mathematical properties of this new distribution. Moreover, since the Fisher F-distribution has a close relationship with the t-distribution, we also introduce a generalization of the F-distribution and prove that it converges to the chi-square distribution as the number of samples tends to infinity. Finally some particular sub-cases of these distributions are considered.
Resumo:
We present distribution independent bounds on the generalization misclassification performance of a family of kernel classifiers with margin. Support Vector Machine classifiers (SVM) stem out of this class of machines. The bounds are derived through computations of the $V_gamma$ dimension of a family of loss functions where the SVM one belongs to. Bounds that use functions of margin distributions (i.e. functions of the slack variables of SVM) are derived.
Resumo:
Baylis & Driver (Nature Neuroscience, 2001) have recently presented data on the response of neurons in macaque inferotemporal cortex (IT) to various stimulus transformations. They report that neurons can generalize over contrast and mirror reversal, but not over figure-ground reversal. This finding is taken to demonstrate that ``the selectivity of IT neurons is not determined simply by the distinctive contours in a display, contrary to simple edge-based models of shape recognition'', citing our recently presented model of object recognition in cortex (Riesenhuber & Poggio, Nature Neuroscience, 1999). In this memo, I show that the main effects of the experiment can be obtained by performing the appropriate simulations in our simple feedforward model. This suggests for IT cell tuning that the possible contributions of explicit edge assignment processes postulated in (Baylis & Driver, 2001) might be smaller than expected.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Most network operators have considered reducing LSR label spaces (number of labels used) as a way of simplifying management of underlaying virtual private networks (VPNs) and therefore reducing operational expenditure (OPEX). The IETF outlined the label merging feature in MPLS-allowing the configuration of multipoint-to-point connections (MP2P)-as a means of reducing label space in LSRs. We found two main drawbacks in this label space reduction a)it should be separately applied to a set of LSPs with the same egress LSR-which decreases the options for better reductions, and b)LSRs close to the edge of the network experience a greater label space reduction than those close to the core. The later implies that MP2P connections reduce the number of labels asymmetrically
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n