975 resultados para speech interference level
Resumo:
Traditional speech enhancement methods optimise signal-level criteria such as signal-to-noise ratio, but such approaches are sub-optimal for noise-robust speech recognition. Likelihood-maximising (LIMA) frameworks on the other hand, optimise the parameters of speech enhancement algorithms based on state sequences generated by a speech recogniser for utterances of known transcriptions. Previous applications of LIMA frameworks have generated a set of global enhancement parameters for all model states without taking in account the distribution of model occurrence, making optimisation susceptible to favouring frequently occurring models, in particular silence. In this paper, we demonstrate the existence of highly disproportionate phonetic distributions on two corpora with distinct speech tasks, and propose to normalise the influence of each phone based on a priori occurrence probabilities. Likelihood analysis and speech recognition experiments verify this approach for improving ASR performance in noisy environments.
Resumo:
Keyword Spotting is the task of detecting keywords of interest within continu- ous speech. The applications of this technology range from call centre dialogue systems to covert speech surveillance devices. Keyword spotting is particularly well suited to data mining tasks such as real-time keyword monitoring and unre- stricted vocabulary audio document indexing. However, to date, many keyword spotting approaches have su®ered from poor detection rates, high false alarm rates, or slow execution times, thus reducing their commercial viability. This work investigates the application of keyword spotting to data mining tasks. The thesis makes a number of major contributions to the ¯eld of keyword spotting. The ¯rst major contribution is the development of a novel keyword veri¯cation method named Cohort Word Veri¯cation. This method combines high level lin- guistic information with cohort-based veri¯cation techniques to obtain dramatic improvements in veri¯cation performance, in particular for the problematic short duration target word class. The second major contribution is the development of a novel audio document indexing technique named Dynamic Match Lattice Spotting. This technique aug- ments lattice-based audio indexing principles with dynamic sequence matching techniques to provide robustness to erroneous lattice realisations. The resulting algorithm obtains signi¯cant improvement in detection rate over lattice-based audio document indexing while still maintaining extremely fast search speeds. The third major contribution is the study of multiple veri¯er fusion for the task of keyword veri¯cation. The reported experiments demonstrate that substantial improvements in veri¯cation performance can be obtained through the fusion of multiple keyword veri¯ers. The research focuses on combinations of speech background model based veri¯ers and cohort word veri¯ers. The ¯nal major contribution is a comprehensive study of the e®ects of limited training data for keyword spotting. This study is performed with consideration as to how these e®ects impact the immediate development and deployment of speech technologies for non-English languages.
Resumo:
Dengue is currently the most important arthropod-borne viral disease of humans. Recent work has shown dengue virus displays limited replication in its primary vector, the mosquito Aedes aegypti, when the insect harbors the endosymbiotic bacterium Wolbachia pipientis. Wolbachia-mediated inhibition of virus replication may lead to novel methods of arboviral control, yet the functional and cellular mechanisms that underpin it are unknown.
Resumo:
Background Recent initiatives within an Australia public healthcare service have seen a focus on increasing the research capacity of their workforce. One of the key initiatives involves encouraging clinicians to be research generators rather than solely research consumers. As a result, baseline data of current research capacity are essential to determine whether initiatives encouraging clinicians to undertake research have been effective. Speech pathologists have previously been shown to be interested in conducting research within their clinical role; therefore they are well positioned to benefit from such initiatives. The present study examined the current research interest, confidence and experience of speech language pathologists (SLPs) in a public healthcare workforce, as well as factors that predicted clinician research engagement. Methods Data were collected via an online survey emailed to an estimated 330 SLPs working within Queensland, Australia. The survey consisted of 30 questions relating to current levels of interest, confidence and experience performing specific research tasks, as well as how frequently SLPs had performed these tasks in the last 5 years. Results Although 158 SLPs responded to the survey, complete data were available for only 137. Respondents were more confident and experienced with basic research tasks (e.g., finding literature) and less confident and experienced with complex research tasks (e.g., analysing and interpreting results, publishing results). For most tasks, SLPs displayed higher levels of interest in the task than confidence and experience. Research engagement was predicted by highest qualification obtained, current job classification level and overall interest in research. Conclusions Respondents generally reported levels of interest in research higher than their confidence and experience, with many respondents reporting limited experience in most research tasks. Therefore SLPs have potential to benefit from research capacity building activities to increase their research skills in order to meet organisational research engagement objectives. However, these findings must be interpreted with the caveats that a relatively low response rate occurred and participants were recruited from a single state-wide health service, and therefore may not be representative of the wider SLP workforce.
Resumo:
We have identified in apple (Malus × domestica) three chalcone synthase (CHS) genes. In order to understand the functional redundancy of this gene family RNA interference knockout lines were generated where all three of these genes were down-regulated. These lines had no detectable anthocyanins and radically reduced concentrations of dihydrochalcones and flavonoids. Surprisingly, down-regulation of CHS also led to major changes in plant development, resulting in plants with shortened internode lengths, smaller leaves and a greatly reduced growth rate. Microscopic analysis revealed that these phenotypic changes extended down to the cellular level, with CHS-silenced lines showing aberrant cellular organisation in the leaves. Fruit collected from one CHS-silenced line was smaller than the 'Royal Gala' controls, lacked flavonoids in the skin and flesh and also had changes in cell morphology. Auxin transport experiments showed increased rates of auxin transport in a CHS-silenced line compared with the 'Royal Gala' control. As flavonoids are well known to be key modulators of auxin transport, we hypothesise that the removal of almost all flavonoids from the plant by CHS silencing creates a vastly altered environment for auxin transport to occur and results in the observed changes in growth and development.
Resumo:
Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating noncritical in-car systems. Under such conditions, however, speech recognition accuracy degrades significantly, and techniques such as speech enhancement are required to improve these accuracies. Likelihood-maximizing (LIMA) frameworks optimize speech enhancement algorithms based on recognized state sequences rather than traditional signal-level criteria such as maximizing signal-to-noise ratio. LIMA frameworks typically require calibration utterances to generate optimized enhancement parameters that are used for all subsequent utterances. Under such a scheme, suboptimal recognition performance occurs in noise conditions that are significantly different from that present during the calibration session – a serious problem in rapidly changing noise environments out on the open road. In this chapter, we propose a dialog-based design that allows regular optimization iterations in order to track the ever-changing noise conditions. Experiments using Mel-filterbank noise subtraction (MFNS) are performed to determine the optimization requirements for vehicular environments and show that minimal optimization is required to improve speech recognition, avoid over-optimization, and ultimately assist with semireal-time operation. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session only.
Resumo:
The speed at which target pictures are named increases monotonically as a function of prior retrieval of other exemplars of the same semantic category and is unaffected by the number of intervening items. This cumulative semantic interference effect is generally attributed to three mechanisms: shared feature activation, priming and lexical-level selection. However, at least two additional mechanisms have been proposed: (1) a 'booster' to amplify lexical-level activation and (2) retrieval-induced forgetting (RIF). In a perfusion functional Magnetic Resonance Imaging (fMRI) experiment, we tested hypotheses concerning the involvement of all five mechanisms. Our results demonstrate that the cumulative interference effect is associated with perfusion signal changes in the left perirhinal and middle temporal cortices that increase monotonically according to the ordinal position of exemplars being named. The left inferior frontal gyrus (LIFG) also showed significant perfusion signal changes across ordinal presentations; however, these responses did not conform to a monotonically increasing function. None of the cerebral regions linked with RIF in prior neuroimaging and modelling studies showed significant effects. This might be due to methodological differences between the RIF paradigm and continuous naming as the latter does not involve practicing particular information. We interpret the results as indicating priming of shared features and lexical-level selection mechanisms contribute to the cumulative interference effect, while adding noise to a booster mechanism could account for the pattern of responses observed in the LIFG.
Resumo:
We used event-related functional magnetic resonance imaging (fMRI) to investigate neural responses associated with the semantic interference (SI) effect in the picture-word task. Independent stage models of word production assume that the locus of the SI effect is at the conceptual processing level (Levelt et al. [1999]: Behav Brain Sci 22:1-75), whereas interactive models postulate that it occurs at phonological retrieval (Starreveld and La Heij [1996]: J Exp Psychol Learn Mem Cogn 22:896-918). In both types of model resolution of the SI effect occurs as a result of competitive, spreading activation without the involvement of inhibitory links. These assumptions were tested by randomly presenting participants with trials from semantically-related and lexical control distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt vocalization of picture names occurred in the absence of scanner noise, allowing reaction time (RT) data to be collected. Analysis of the RT data confirmed the SI effect. Regions showing differential hemodynamic responses during the SI effect included the left mid section of the middle temporal gyrus, left posterior superior temporal gyrus, left anterior cingulate cortex, and bilateral orbitomedial prefrontal cortex. Additional responses were observed in the frontal eye fields, left inferior parietal lobule, and right anterior temporal and occipital cortex. The results are interpreted as indirectly supporting interactive models that allow spreading activation between both conceptual processing and phonological retrieval levels of word production. In addition, the data confirm that selective attention/response suppression has a role in resolving the SI effect similar to the way in which Stroop interference is resolved. We conclude that neuroimaging studies can provide information about the neuroanatomical organization of the lexical system that may prove useful for constraining theoretical models of word production.
Resumo:
Objects presented in categorically related contexts are typically named slower than objects presented in unrelated contexts, a phenomenon termed semantic interference. However, not all semantic relationships induce interference. In the present study, we investigated the influence of object part-relations in the blocked cyclic naming paradigm. In Experiment 1 we established that an object's parts do induce a semantic interference effect when named in context compared to unrelated parts (e.g., leaf, root, nut, bark; for tree). In Experiment 2) we replicated the effect during perfusion functional magnetic resonance imaging (fMRI) to identify the cerebral regions involved. The interference effect was associated with significant perfusion signal increases in the hippocampal formation and decreases in the dorsolateral prefrontal cortex. We failed to observe significant perfusion signal changes in the left lateral temporal lobe, a region that shows reliable activity for interference effects induced by categorical relations in the same paradigm and is proposed to mediate lexical-semantic processing. We interpret these results as supporting recent explanations of semantic interference in blocked cyclic naming that implicate working memory mechanisms. However, given the failure to observe significant perfusion signal changes in the left temporal lobe, the results provide only partial support for accounts that assume semantic interference in this paradigm arises solely due to lexical-level processes.
Resumo:
How does the presence of a categorically related word influence picture naming latencies? In order to test competitive and noncompetitive accounts of lexical selection in spoken word production, we employed the picture–word interference (PWI) paradigm to investigate how conceptual feature overlap influences naming latencies when distractors are category coordinates of the target picture. Mahon et al. (2007. Lexical selection is not by competition: A reinterpretation of semantic interference and facilitation effects in the picture-word interference paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33(3), 503–535. doi:10.1037/0278-7393.33.3.503) reported that semantically close distractors (e.g., zebra) facilitated target picture naming latencies (e.g., HORSE) compared to far distractors (e.g., whale). We failed to replicate a facilitation effect for within-category close versus far target–distractor pairings using near-identical materials based on feature production norms, instead obtaining reliably larger interference effects (Experiments 1 and 2). The interference effect did not show a monotonic increase across multiple levels of within-category semantic distance, although there was evidence of a linear trend when unrelated distractors were included in analyses (Experiment 2). Our results show that semantic interference in PWI is greater for semantically close than for far category coordinate relations, reflecting the extent of conceptual feature overlap between target and distractor. These findings are consistent with the assumptions of prominent competitive lexical selection models of speech production.
Resumo:
Long-lasting interference effects in picture naming are induced when objects are presented in categorically related contexts in both continuous and blocked cyclic paradigms. Less consistent context effects have been reported when the task is changed to semantic classification. Experiment 1 confirmed the recent finding of cumulative facilitation in the continuous paradigm with living/non-living superordinate categorization. To avoid a potential confound involving participants responding with the identical superordinate category in related contexts in the blocked cyclic paradigm, we devised a novel set of categorically related objects that also varied in terms of relative age – a core semantic type associated with the adjective word class across languages. Experiment 2 demonstrated the typical interference effect with these stimuli in basic level naming. In Experiment 3, using the identical blocked cyclic paradigm, we failed to observe semantic context effects when the same pictures were classified as younger–older. Overall, the results indicate the semantic context effects in the two paradigms do not share a common origin, with the effect in the continuous paradigm arising at the level of conceptual representations or in conceptual-to-lexical connections while the effect in the blocked cyclic paradigm most likely originates at a lexical level of representation. The implications of these findings for current accounts of long-lasting interference effects in spoken word production are discussed.
Resumo:
By using small scale model tests, the interference effect on the ultimate bearing capacity of two closely spaced strip footings, placed on the surface of dry sand, was investigated. At any time, the footings were assumed to (1) carry exactly the same magnitude of load; and (2) settle to the same extent. No tilt of the footing was allowed. The effect of clear spacing (s) between two footings was explicitly studied. An interference of footings leads to a significant increase in their bearing capacity; the interference effect becomes even more substantial with an increase in the relative density of sand. The bearing capacity attains a peak magnitude at a certain (critical) spacing between two footings. The experimental observations presented in this technical note were similar to those given by different available theories. However, in a quantitative sense, the difference between the experiments and theories was seen to be still significant and it emphasizes the need of doing a further rigorous analysis in which the effect of stress level on the shear strength parameters of soil mass can be incorporated properly.
Resumo:
This dissertation consists of four articles and an introduction. The five parts address the same topic, nonverbal predication in Erzya, from different perspectives. The work is at the same time linguistic typology and Uralic studies. The findings based on a large corpus of empirical Erzya data, which was collected using several different methods and included recordings of the spoken language, made it possible for the present study to apply, then test and finally discuss the previous theories based on cross-linguistic data. Erzya makes use of multiple predication patterns which vary from totally analytic to the morphologically very complex. Nonverbal predicate clause types are classified on the basis of propositional acts in clauses denoting class-membership, identity, property and location. The predicates of these clauses are nouns, adjectives and locational expressions, respectively. The following three predication strategies in Erzya nonverbal predication can be identified: i. the zero-copula construction, ii. the predicative suffix construction and iii. the copula construction. It has been suggested that verbs and nouns cannot be clearly distinguished on morphological grounds when functioning as predicates in Erzya. This study shows that even though predicativity must not be considered a sufficient tool for defining parts of speech in any language, the Erzya lexical classes of adjective, noun and verb can be distinguished from each other also in predicate position. The relative frequency and degree of obligation for using the predicative suffix construction decreases when moving left to right on the scale verb adjective/locative noun ( identificational statement). The predicative suffix is the main pattern in the present tense over the whole domain of nonverbal predication in Standard Erzya, but if it is replaced it is most likely to be with a zero-copula construction in a nominal predication. This study exploits the theory of (a)symmetry for the first time in order to describe verbal vs. nonverbal predication. It is shown that the asymmetry of paradigms and constructions differentiates the lexical classes. Asymmetrical structures are motivated by functional level asymmetry. Variation in predication as such adds to the complexity of the grammar. When symmetric structures are employed, the functional complexity of grammar decreases, even though morphological complexity increases. The genre affects the employment of predication strategies in Erzya. There are differences in the relative frequency of the patterns, and some patterns are totally lacking from some of the data. The clearest difference is that the past tense predicative suffix construction occurs relatively frequently in Standard Erzya, while it occurs infrequently in the other data. Also, the predicative suffixes of the present tense are used more regularly in written Standard Erzya than in any other genre. The genre also affects the incidence of the translative in uľ(ń)ems copula constructions. In translations from Russian to Erzya the translative case is employed relatively frequently in comparison to other data. This study reveals differences between the two Mordvinic languages Erzya and Moksha. The predicative suffixes (bound person markers) of the present tense are used more regularly in Moksha in all kinds of nonverbal predicate clauses compared to Erzya. It should further be observed that identificational statements are encoded with a predicative suffix in Moksha, but seldom in Erzya. Erzya clauses are more frequently encoded using zero-constructions, displaying agreement in number only.
Resumo:
Comprehension of a complex acoustic signal - speech - is vital for human communication, with numerous brain processes required to convert the acoustics into an intelligible message. In four studies in the present thesis, cortical correlates for different stages of speech processing in a mature linguistic system of adults were investigated. In two further studies, developmental aspects of cortical specialisation and its plasticity in adults were examined. In the present studies, electroencephalographic (EEG) and magnetoencephalographic (MEG) recordings of the mismatch negativity (MMN) response elicited by changes in repetitive unattended auditory events and the phonological mismatch negativity (PMN) response elicited by unexpected speech sounds in attended speech inputs served as the main indicators of cortical processes. Changes in speech sounds elicited the MMNm, the magnetic equivalent of the electric MMN, that differed in generator loci and strength from those elicited by comparable changes in non-speech sounds, suggesting intra- and interhemispheric specialisation in the processing of speech and non-speech sounds at an early automatic processing level. This neuronal specialisation for the mother tongue was also reflected in the more efficient formation of stimulus representations in auditory sensory memory for typical native-language speech sounds compared with those formed for unfamiliar, non-prototype speech sounds and simple tones. Further, adding a speech or non-speech sound context to syllable changes was found to modulate the MMNm strength differently in the left and right hemispheres. Following the acoustic-phonetic processing of speech input, phonological effort related to the selection of possible lexical (word) candidates was linked with distinct left-hemisphere neuronal populations. In summary, the results suggest functional specialisation in the neuronal substrates underlying different levels of speech processing. Subsequently, plasticity of the brain's mature linguistic system was investigated in adults, in whom representations for an aurally-mediated communication system, Morse code, were found to develop within the same hemisphere where representations for the native-language speech sounds were already located. Finally, recording and localization of the MMNm response to changes in speech sounds was successfully accomplished in newborn infants, encouraging future MEG investigations on, for example, the state of neuronal specialisation at birth.