857 resultados para species and community


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A community bioassay of copper was performed using benthic macroinvertebrates colonized on multiplate substrate samplers. Five copper concentrations ranging from 0.080-2.20 mg/l total copper were administered to five artificial streams by a Mount and Brungs proportional dilutor. Free copper ion as Cu('++) ranged from .002-.053 mg/l. A sixth stream received no copper and served as a control. Substrates were sampled at days 0, 14, and 28, and the results were used to compare 13 indices used or proposed to assess aquatic environmental impact. Sensitivity of the indices to changes in communities with respect to concentration and time was the basis for the comparison.^ Results indicated that all of the 8 diversity or richness indices tested gave approximately the same result (with the exception of number of species); they increased over the first 2-3 concentrations, then declined. Included among these was the Shannon index which gave false positive results, i.e., it increased, indicating enrichment, when in fact perturbation had occurred. This result was due to the disproportionate effect on the most abundant taxa, which caused a more even distribution of individuals among species. Number of species and individuals declined with increased concentration and time, with only one exception in the case of species, indicating perturbation.^ Results of five community comparison indices were varied at day 14 but by day 28 the results indicated a clear, nearly monotonic, trend due to copper impact. It was assumed that day 28 observations, though probably still changing, were nearer stability than at day 14 and therefore more representative of natural conditions. The changes in community comparison indices showed good agreement at 28 days and reflected the general decline in species and individuals. No single community comparison index could be set apart as superior to the others. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In SW Ethiopia, the moist evergreen Afromontane forest has become extremely fragmented and most of the remnants are intensively managed for coffee cultivation (Coffea arabica), with considerable impacts on biodiversity and ecosystem functioning. Because epiphytic orchids are potential indicators for forest quality and a proxy for overall forest biodiversity, we assessed the effect of forest management and forest fragmentation on epiphytic orchid diversity. We selected managed forest sites from both large and small forest remnants and compared their epiphytic orchid diversity with the diversity of natural unfragmented forest. We surveyed 339 canopy trees using rope climbing techniques. Orchid richness decreased and community composition changed, from the natural unfragmented forest, over the large managed forest fragments to the small managed forest fragments. This indicates that both forest management and fragmentation contribute to the loss of epiphytic orchids. Both the removal of large canopy trees typical for coffee management, and the occurrence of edge effects accompanying forest fragmentation are likely responsible for species loss and community composition changes. Even though some endangered orchid species persist even in the smallest fragments, large managed forest fragments are better options for the conservation of epiphytic orchids than small managed forests. Our results ultimately show that even though shade coffee cultivation is considered as a close-to-nature practice and is promoted as biodiversity conservation friendly, it cannot compete with the epiphytic orchid conservation benefit generated by unmanaged moist evergreen Afromontane forests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on the zooplankton community structure, gut evacuation rate and carbon content of zooplankton faecal pellets were used for assessing the contribution of zooplankton to vertical carbon fluxes in the White and Kara Seas. The results revealed strong regional and seasonal variations of pellet carbon input related to differences in structure and dynamics of the zooplankton communities in the regions studied. In the deep regions of the White Sea, maximum daily pellet carbon flux from the 0-50 m layer was observed in the spring. It reached 98 mg Corg m-2 day-1 and coincided with a strong predominance of the large arctic herbivorous copepod Calanus glacialis in the surface layers. In summer and fall, it decreased by 1 to 2 orders of magnitude due to migration of this copepod to its overwintering depths. In contrast, in the shallow coastal regions, the pellet production was low in spring, gradually increased during summer and reached its maximum of 138 mg Corg m-2 day-1 by late summer to beginning of autumn. Such a seasonal pattern was in accordance with the seasonal variation of abundance of major pellet producers, the small boreal copepods Acartia bifilosa, Centropages hamatus, and Temora longicornis. In the estuarine zone of the Kara Sea, the pellet flux was mostly formed by pellets of brackish-water omnivorous copepods. It varied from 35 mg Corg m-2 day-1 in 1997 to 96 mg Corg m-2 day-1 in 1999. In the central Kara Sea with its typical marine community, the daily flux reached 125 mg Corg m-2 day-1 in summer. The results of our calculations indicate that both in the White and Kara seas zooplankton pellet carbon contributes up to 30 % to the total carbon flux during particular seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcification and growth of crustose coralline algae (CCA) are affected by elevated seawater pCO2 and associated changes in carbonate chemistry. However, the effects of ocean acidification (OA) on population and community-level responses of CCA have barely been investigated. We explored changes in community structure and population dynamics (size structure and reproduction) of CCA in response to OA. Recruited from an experimental flow-through system, CCA settled onto the walls of plastic aquaria and developed under exposure to one of three pCO2 treatments (control [present day, 389±6 ppm CO2], medium [753±11 ppm], and high [1267±19 ppm]). Elevated pCO2 reduced total CCA abundance and affected community structure, in particular the density of the dominant species Pneophyllum sp. and Porolithon onkodes. Meanwhile, the relative abundance of P. onkodes declined from 24% under control CO2 to 8.3% in high CO2 (65% change), while the relative abundance of Pneophyllum sp. remained constant. Population size structure of P. onkodes differed significantly across treatments, with fewer larger individuals under high CO2. In contrast, the population size structure and number of reproductive structures (conceptacles) per crust of Pneophyllum sp. was similar across treatments. The difference in the magnitude of the response of species abundance and population size structure between species may have the potential to induce species composition changes in the future. These results demonstrate that the impacts of OA on key coral reef builders go beyond declines in calcification and growth, and suggest important changes to aspects of population dynamics and community ecology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and distribution of the macrobenthic communities were studied in the southwestern Kara Sea. The material was collected in Baidaratskaya Bay in July 2007 and in a section running westward of the Yamal Peninsula in September 2007. The depths of the sampling stations ranged from 5 to 25 m in the Baidaratskaya Bay area and between 16 and 46 m in the Yamal section. A total of 212 benthic invertebrate species were recorded. In both areas, Bivalvia was the group with the highest biomass (54.88 g/m**2 in the Yamal section and 59.71 g/m**2 in the Baidaratskaya Bay area), while polychaetes were the group with the highest number of species (45 in the Yamal section and 64 the Baidaratskaya Bay area). Three major macrozoobenthic communities were recognized: the Astarte borealis community (20-46 m, the deepest sampling stations in both areas); the 'medium-depth' community (10-20 m, extremely mosaic, usually dominated by Serripes groenlandicus); and the Nephtys longosetosa community (depth smaller than 10 m, characterized by low biomass and the absence of large bivalves and echinoderms). The western Yamal shallow-water communities were shown to be generally similar to those of Baidaratskaya Bay. The comparison of these results with those of the benthos censuses performed in 1927-1945, 1975, and 1993 showed that the benthic communities in the southwestern Kara Sea remained relatively stable during the second half of the 20th century and the early 21st century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of mangrove restoration projects should be to improve community structure and ecosystem function of degraded coastal landscapes. This requires the ability to forecast how mangrove structure and function will respond to prescribed changes in site conditions including hydrology, topography, and geophysical energies. There are global, regional, and local factors that can explain gradients of regulators (e.g., salinity, sulfides), resources (nutrients, light, water), and hydroperiod (frequency, duration of flooding) that collectively account for stressors that result in diverse patterns of mangrove properties across a variety of environmental settings. Simulation models of hydrology, nutrient biogeochemistry, and vegetation dynamics have been developed to forecast patterns in mangroves in the Florida Coastal Everglades. These models provide insight to mangrove response to specific restoration alternatives, testing causal mechanisms of system degradation. We propose that these models can also assist in selecting performance measures for monitoring programs that evaluate project effectiveness. This selection process in turn improves model development and calibration for forecasting mangrove response to restoration alternatives. Hydrologic performance measures include soil regulators, particularly soil salinity, surface topography of mangrove landscape, and hydroperiod, including both the frequency and duration of flooding. Estuarine performance measures should include salinity of the bay, tidal amplitude, and conditions of fresh water discharge (included in the salinity value). The most important performance measures from the mangrove biogeochemistry model should include soil resources (bulk density, total nitrogen, and phosphorus) and soil accretion. Mangrove ecology performance measures should include forest dimension analysis (transects and/or plots), sapling recruitment, leaf area index, and faunal relationships. Estuarine ecology performance measures should include the habitat function of mangroves, which can be evaluated with growth rate of key species, habitat suitability analysis, isotope abundance of indicator species, and bird census. The list of performance measures can be modified according to the model output that is used to define the scientific goals during the restoration planning process that reflect specific goals of the project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used a one-dimensional, spatially explicit model to simulate the community of small fishes in the freshwater wetlands of southern Florida, USA. The seasonality of rainfall in these wetlands causes annual fluctuations in the amount of flooded area. We modeled fish populations that differed from each other only in efficiency of resource utilization and dispersal ability. The simulations showed that these trade-offs, along with the spatial and temporal variability of the environment, allow coexistence of several species competing exploitatively for a common resource type. This mechanism, while sharing some characteristics with other mechanisms proposed for coexistence of competing species, is novel in detail. Simulated fish densities resembled patterns observed in Everglades empirical data. Cells with hydroperiods less than 6 months accumulated negligible fish biomass. One unique model result was that, when multiple species coexisted, it was possible for one of the coexisting species to have both lower local resource utilization efficiency and lower dispersal ability than one of the other species. This counterintuitive result is a consequence of stronger effects of other competitors on the superior species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global “herbivore.” Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models of community regulation commonly incorporate gradients of disturbance inversely related to the role of biotic interactions in regulating intermediate trophic levels. Higher trophic-level organisms are predicted to be more strongly limited by intermediate levels of disturbance than are the organisms they consume. We used a manipulation of the frequency of hydrological disturbance in an intervention analysis to examine its effects on small-fish communities in the Everglades, USA. From 1978 to 2002, we monitored fishes at one long-hydroperiod (average 350 days) and at one short-hydroperiod (average 259 days; monitoring started here in 1985) site. At a third site, managers intervened in 1985 to diminish the frequency and duration of marsh drying. By the late 1990s, the successional dynamics of density and relative abundance at the intervention site converged on those of the long-hydroperiod site. Community change was manifested over 3 to 5 years following a dry-down if a site remained inundated; the number of days since the most recent drying event and length of the preceding dry period were useful for predicting population dynamics. Community dissimilarity was positively correlated with the time since last dry. Community dynamics resulted from change in the relative abundance of three groups of species linked by life-history responses to drought. Drought frequency and intensity covaried in response to hydrological manipulation at the landscape scale; community-level successional dynamics converged on a relatively small range of species compositions when drought return-time extended beyond 4 years. The density of small fishes increased with diminution of drought frequency, consistent with disturbance-limited community structure; less-frequent drying than experienced in this study (i.e., longer return times) yields predator-dominated regulation of small-fish communities in some parts of the Everglades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reefs are among the most productive ecosystems in the world. Yet, with their recent declines due to disease, climate change, and overfishing, restoration of these habitats is one of the main concerns for ecologists, resource managers, and government organizations. Coral reef restoration aims to promote key ecosystem processes to shift these habitats to their historical state of high coral cover, but few studies have focused on effective ways to promote resilience. In addition, little is known about the impact of restoration on the fish communities. The aim of this study is to understand how the community of herbivorous fishes is affected by the density of coral outplants inside a special protection area located in the Florida Keys National Marine Sanctuary. Grazing rates, number of visits and time spent foraging were compared using video footage of sites previously devoid of corals, and six months after coral restorations had occurred. Coral transplantations did not appear to attract herbivores nor increase grazing rates of fishes. Instead Sparisoma and Acanthurus fishes appear to respond to changes in the environment by modifying their grazing behavior. However, there was an observed increase in visits by Acanthurus species after transplantation for all the sites sampled within the reef. These fishes seemed to prefer low coral cover sites for grazing. This study highlights the importance of examining coral restorations impacts at the community level. Understanding how restoration influences herbivores and other guilds of reef fishes will allow individuals to not only determine if these habitats are returning to their “original” state, but provide more information on the ways these systems cope with changes in the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of elevated pCO2 on the metabolism of a coral reef community dominated by macroalgae has been investigated utilizing the large 2650 m3 coral reef mesocosm at the Biosphere-2 facility near Tucson, Arizona. The carbonate chemistry of the water was manipulated to simulate present-day and a doubled CO2 future condition. Each experiment consisted of a 1-2 month preconditioning period followed by a 7-9 day observational period. The pCO2 was 404 ± 63 ?atm during the present-day pCO2 experiment and 658 ± 59 ?atm during the elevated pCO2 experiment. Nutrient levels were low and typical of natural reefs waters (NO3? 0.5-0.9 ?M, NH4+ 0.4 ?M, PO43? 0.07-0.09 ?M). The temperature and salinity of the water were held constant at 26.5 ± 0.2°C and 34.4 ± 0.2 ppt. Photosynthetically available irradiance was 10 ± 2 during the present-day experiment and 7.4 ± 0.5 mol photons m?2 d?1 during the elevated pCO2 experiment. The primary producer biomass in the mesocosm was dominated by four species of macroalgae; Haptilon cubense, Amphiroa fragillisima, Gelidiopsis intricata and Chondria dasyphylla. Algal biomass was 10.4 mol C m?2 during the present-day and 8.7 mol C m?2 and during the elevated pCO2 experiments. As previously observed, the increase in pCO2 resulted in a decrease in calcification from 0.041 ± 0.007 to 0.006 ± 0.003 mol CaCO3 m?2 d?1. Net community production (NCP) and dark respiration did not change in response to elevated pCO2. Light respiration measured by a new radiocarbon isotope dilution method exceeded dark respiration by a factor of 1.2 ± 0.3 to 2.1 ± 0.4 on a daily basis and by 2.2 ± 0.6 to 3.9 ± 0.8 on an hourly basis. The 1.8-fold increase with increasing pCO2 indicates that the enhanced respiration in the light was not due to photorespiration. Gross production (GPP) computed as the sum of NCP plus daily respiration (light + dark) increased significantly (0.24 ± 0.03 vs. 0.32 ± 0.04 mol C m?2 d?1). However, the conventional calculation of GPP based on the assumption that respiration in the light proceeds at the same rate as the dark underestimated the true rate of GPP by 41-100% and completely missed the increased rate of carbon cycling due to elevated pCO2. We conclude that under natural, undisturbed, nutrient-limited conditions elevated CO2 depresses calcification, stimulates the rate of turnover of organic carbon, particularly in the light, but has no effect on net organic production. The hypothesis that an increase pCO2 would produce an increase in net production that would counterbalance the effect of decreasing saturation state on calcification is not supported by these data.