979 resultados para spatial markov Chains


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Among the largest resources for biological sequence data is the large amount of expressed sequence tags (ESTs) available in public and proprietary databases. ESTs provide information on transcripts but for technical reasons they often contain sequencing errors. Therefore, when analyzing EST sequences computationally, such errors must be taken into account. Earlier attempts to model error prone coding regions have shown good performance in detecting and predicting these while correcting sequencing errors using codon usage frequencies. In the research presented here, we improve the detection of translation start and stop sites by integrating a more complex mRNA model with codon usage bias based error correction into one hidden Markov model (HMM), thus generalizing this error correction approach to more complex HMMs. We show that our method maintains the performance in detecting coding sequences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION: Hip fractures are responsible for excessive mortality, decreasing the 5-year survival rate by about 20%. From an economic perspective, they represent a major source of expense, with direct costs in hospitalization, rehabilitation, and institutionalization. The incidence rate sharply increases after the age of 70, but it can be reduced in women aged 70-80 years by therapeutic interventions. Recent analyses suggest that the most efficient strategy is to implement such interventions in women at the age of 70 years. As several guidelines recommend bone mineral density (BMD) screening of postmenopausal women with clinical risk factors, our objective was to assess the cost-effectiveness of two screening strategies applied to elderly women aged 70 years and older. METHODS: A cost-effectiveness analysis was performed using decision-tree analysis and a Markov model. Two alternative strategies, one measuring BMD of all women, and one measuring BMD only of those having at least one risk factor, were compared with the reference strategy "no screening". Cost-effectiveness ratios were measured as cost per year gained without hip fracture. Most probabilities were based on data observed in EPIDOS, SEMOF and OFELY cohorts. RESULTS: In this model, which is mostly based on observed data, the strategy "screen all" was more cost effective than "screen women at risk." For one woman screened at the age of 70 and followed for 10 years, the incremental (additional) cost-effectiveness ratio of these two strategies compared with the reference was 4,235 euros and 8,290 euros, respectively. CONCLUSION: The results of this model, under the assumptions described in the paper, suggest that in women aged 70-80 years, screening all women with dual-energy X-ray absorptiometry (DXA) would be more effective than no screening or screening only women with at least one risk factor. Cost-effectiveness studies based on decision-analysis trees maybe useful tools for helping decision makers, and further models based on different assumptions should be performed to improve the level of evidence on cost-effectiveness ratios of the usual screening strategies for osteoporosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kolmogorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expansion formula as in Ait-Sahalia (2008). We provide numerical examples for European stock option pricing in Black and Scholes (1973), Merton (1976) and Kou (2002).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hidden Markov models (HMMs) are probabilistic models that are well adapted to many tasks in bioinformatics, for example, for predicting the occurrence of specific motifs in biological sequences. MAMOT is a command-line program for Unix-like operating systems, including MacOS X, that we developed to allow scientists to apply HMMs more easily in their research. One can define the architecture and initial parameters of the model in a text file and then use MAMOT for parameter optimization on example data, decoding (like predicting motif occurrence in sequences) and the production of stochastic sequences generated according to the probabilistic model. Two examples for which models are provided are coiled-coil domains in protein sequences and protein binding sites in DNA. A wealth of useful features include the use of pseudocounts, state tying and fixing of selected parameters in learning, and the inclusion of prior probabilities in decoding. AVAILABILITY: MAMOT is implemented in C++, and is distributed under the GNU General Public Licence (GPL). The software, documentation, and example model files can be found at http://bcf.isb-sib.ch/mamot

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: To determine whether nalmefene combined with psychosocial support is cost-effective compared with psychosocial support alone for reducing alcohol consumption in alcohol-dependent patients with high/very high drinking risk levels (DRLs) as defined by the WHO, and to evaluate the public health benefit of reducing harmful alcohol-attributable diseases, injuries and deaths. DESIGN: Decision modelling using Markov chains compared costs and effects over 5 years. SETTING: The analysis was from the perspective of the National Health Service (NHS) in England and Wales. PARTICIPANTS: The model considered the licensed population for nalmefene, specifically adults with both alcohol dependence and high/very high DRLs, who do not require immediate detoxification and who continue to have high/very high DRLs after initial assessment. DATA SOURCES: We modelled treatment effect using data from three clinical trials for nalmefene (ESENSE 1 (NCT00811720), ESENSE 2 (NCT00812461) and SENSE (NCT00811941)). Baseline characteristics of the model population, treatment resource utilisation and utilities were from these trials. We estimated the number of alcohol-attributable events occurring at different levels of alcohol consumption based on published epidemiological risk-relation studies. Health-related costs were from UK sources. MAIN OUTCOME MEASURES: We measured incremental cost per quality-adjusted life year (QALY) gained and number of alcohol-attributable harmful events avoided. RESULTS: Nalmefene in combination with psychosocial support had an incremental cost-effectiveness ratio (ICER) of £5204 per QALY gained, and was therefore cost-effective at the £20,000 per QALY gained decision threshold. Sensitivity analyses showed that the conclusion was robust. Nalmefene plus psychosocial support led to the avoidance of 7179 alcohol-attributable diseases/injuries and 309 deaths per 100,000 patients compared to psychosocial support alone over the course of 5 years. CONCLUSIONS: Nalmefene can be seen as a cost-effective treatment for alcohol dependence, with substantial public health benefits. TRIAL REGISTRATION NUMBERS: This cost-effectiveness analysis was developed based on data from three randomised clinical trials: ESENSE 1 (NCT00811720), ESENSE 2 (NCT00812461) and SENSE (NCT00811941).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nous considérons des processus de diffusion, définis par des équations différentielles stochastiques, et puis nous nous intéressons à des problèmes de premier passage pour les chaînes de Markov en temps discret correspon- dant à ces processus de diffusion. Comme il est connu dans la littérature, ces chaînes convergent en loi vers la solution des équations différentielles stochas- tiques considérées. Notre contribution consiste à trouver des formules expli- cites pour la probabilité de premier passage et la durée de la partie pour ces chaînes de Markov à temps discret. Nous montrons aussi que les résultats ob- tenus convergent selon la métrique euclidienne (i.e topologie euclidienne) vers les quantités correspondantes pour les processus de diffusion. En dernier lieu, nous étudions un problème de commande optimale pour des chaînes de Markov en temps discret. L’objectif est de trouver la valeur qui mi- nimise l’espérance mathématique d’une certaine fonction de coût. Contraire- ment au cas continu, il n’existe pas de formule explicite pour cette valeur op- timale dans le cas discret. Ainsi, nous avons étudié dans cette thèse quelques cas particuliers pour lesquels nous avons trouvé cette valeur optimale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The general assumption under which the (X) over bar chart is designed is that the process mean has a constant in-control value. However, there are situations in which the process mean wanders. When it wanders according to a first-order autoregressive (AR (1)) model, a complex approach involving Markov chains and integral equation methods is used to evaluate the properties of the (X) over bar chart. In this paper, we propose the use of a pure Markov chain approach to study the performance of the (X) over bar chart. The performance of the chat (X) over bar with variable parameters and the (X) over bar with double sampling are compared. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we studied the consistency for a class of kernel estimates of f f (.) in the Markov chains with general state space E C Rd case. This study is divided into two parts: In the first one f (.) is a stationary density of the chain, and in the second one f (x) v (dx) is the limit distribution of a geometrically ergodic chain

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Os Algoritmos Genético (AG) e o Simulated Annealing (SA) são algoritmos construídos para encontrar máximo ou mínimo de uma função que representa alguma característica do processo que está sendo modelado. Esses algoritmos possuem mecanismos que os fazem escapar de ótimos locais, entretanto, a evolução desses algoritmos no tempo se dá de forma completamente diferente. O SA no seu processo de busca trabalha com apenas um ponto, gerando a partir deste sempre um nova solução que é testada e que pode ser aceita ou não, já o AG trabalha com um conjunto de pontos, chamado população, da qual gera outra população que sempre é aceita. Em comum com esses dois algoritmos temos que a forma como o próximo ponto ou a próxima população é gerada obedece propriedades estocásticas. Nesse trabalho mostramos que a teoria matemática que descreve a evolução destes algoritmos é a teoria das cadeias de Markov. O AG é descrito por uma cadeia de Markov homogênea enquanto que o SA é descrito por uma cadeia de Markov não-homogênea, por fim serão feitos alguns exemplos computacionais comparando o desempenho desses dois algoritmos

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we studied the strong consistency for a class of estimates for a transition density of a Markov chain with general state space E ⊂ Rd. The strong ergodicity of the estimates for the density transition is obtained from the strong consistency of the kernel estimates for both the marginal density p(:) of the chain and the joint density q(., .). In this work the Markov chain is supposed to be homogeneous, uniformly ergodic and possessing a stationary density p(.,.)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The central objective of a study Non-Homogeneous Markov Chains is the concept of weak and strong ergodicity. A chain is weak ergodic if the dependence on the initial distribution vanishes with time, and it is strong ergodic if it is weak ergodic and converges in distribution. Most theoretical results on strong ergodicity assume some knowledge of the limit behavior of the stationary distributions. In this work, we collect some general results on weak and strong ergodicity for chains with space enumerable states, and also study the asymptotic behavior of the stationary distributions of a particular type of Markov Chains with finite state space, called Markov Chains with Rare Transitions

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O artigo analisa a convergência municipal da produtividade vegetal (extração vegetal e silvicultura) na região da Amazônia Legal entre os anos de 1996 e 2006. Para analisar a convergência, optou-se pela metodologia da matriz de transição de Markov (Processo Estacionário de Primeira Ordem de Markov). Os resultados mostram a existência de 13 classes de convergência da produtividade vegetal. No longo prazo, a hipótese de convergência absoluta não se mantém, visto que 68,23% dos municípios encontram-se numa classe inferior à média municipal, 33,54% em uma classe intermediária acima da média e 13,41% em uma classe superior acima da média.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)