982 resultados para software reuse
Resumo:
A Web-service based approach is presented which enables geographically dispersed users to share software resources over the Internet. A service-oriented software sharing system has been developed, which consists of shared applications, client applications and three types of services: application proxy service, proxy implementation service and application manager service. With the aids of the services, the client applications interact with the shared applications to implement a software sharing task. The approach satisfies the requirements of copyright protection and reuse of legacy codes. In this paper, the role of Web-services and the architecture of the system are presented first, followed by a case study to illustrate the approach developed.
Resumo:
Software Product-Line Engineering has emerged in recent years, as an important strategy for maximising reuse within the context of a family of related products. In current approaches to software product-lines, there is general agreement that the definition of a reference-architecture for the product-line is an important step in the software engineering process. In this paper we introduce ADLARS, a new form of architecture Description language that places emphasis on the capture of architectural relationships. ADLARS is designed for use within a product-line engineering process. The language supports both the definition of architectural structure, and of important architectural relationships. In particular it supports capture of the relationships between product features, component and task architectures, interfaces and parameter requirements.
Resumo:
On this research we investigated how new technologies can help the process of design and manufacturing of furniture in such small manufacturers in Rio Grande do Norte state. Google SketchUp, a 3D software tool, was developed in such a way that its internal structures are opened and can be accessed using SketchUp s API for Ruby and programs written in Ruby language (plugins). Using the concepts of the so-called Group Technology and the flexibility that enables adding new functionalities to this software, it was created a Methodology for Modeling of Furniture, a Coding System and a plugin for Google s tool in order to implement the Methodology developed. As resulted, the following facilities are available: the user may create and reuse the library s models over-and-over; reports of the materials manufacturing process costs are provided and, finally, detailed drawings, getting a better integration between the furniture design and manufacturing process
Resumo:
Nowadays, the importance of using software processes is already consolidated and is considered fundamental to the success of software development projects. Large and medium software projects demand the definition and continuous improvement of software processes in order to promote the productive development of high-quality software. Customizing and evolving existing software processes to address the variety of scenarios, technologies, culture and scale is a recurrent challenge required by the software industry. It involves the adaptation of software process models for the reality of their projects. Besides, it must also promote the reuse of past experiences in the definition and development of software processes for the new projects. The adequate management and execution of software processes can bring a better quality and productivity to the produced software systems. This work aimed to explore the use and adaptation of consolidated software product lines techniques to promote the management of the variabilities of software process families. In order to achieve this aim: (i) a systematic literature review is conducted to identify and characterize variability management approaches for software processes; (ii) an annotative approach for the variability management of software process lines is proposed and developed; and finally (iii) empirical studies and a controlled experiment assess and compare the proposed annotative approach against a compositional one. One study a comparative qualitative study analyzed the annotative and compositional approaches from different perspectives, such as: modularity, traceability, error detection, granularity, uniformity, adoption, and systematic variability management. Another study a comparative quantitative study has considered internal attributes of the specification of software process lines, such as modularity, size and complexity. Finally, the last study a controlled experiment evaluated the effort to use and the understandability of the investigated approaches when modeling and evolving specifications of software process lines. The studies bring evidences of several benefits of the annotative approach, and the potential of integration with the compositional approach, to assist the variability management of software process lines
Resumo:
This dissertation presents a model-driven and integrated approach to variability management, customization and execution of software processes. Our approach is founded on the principles and techniques of software product lines and model-driven engineering. Model-driven engineering provides support to the specification of software processes and their transformation to workflow specifications. Software product lines techniques allows the automatic variability management of process elements and fragments. Additionally, in our approach, workflow technologies enable the process execution in workflow engines. In order to evaluate the approach feasibility, we have implemented it using existing model-driven engineering technologies. The software processes are specified using Eclipse Process Framework (EPF). The automatic variability management of software processes has been implemented as an extension of an existing product derivation tool. Finally, ATL and Acceleo transformation languages are adopted to transform EPF process to jPDL workflow language specifications in order to enable the deployment and execution of software processes in the JBoss BPM workflow engine. The approach is evaluated through the modeling and modularization of the project management discipline of the Open Unified Process (OpenUP)
Resumo:
Through the adoption of the software product line (SPL) approach, several benefits are achieved when compared to the conventional development processes that are based on creating a single software system at a time. The process of developing a SPL differs from traditional software construction, since it has two essential phases: the domain engineering - when common and variables elements of the SPL are defined and implemented; and the application engineering - when one or more applications (specific products) are derived from the reuse of artifacts created in the domain engineering. The test activity is also fundamental and aims to detect defects in the artifacts produced in SPL development. However, the characteristics of an SPL bring new challenges to this activity that must be considered. Several approaches have been recently proposed for the testing process of product lines, but they have been shown limited and have only provided general guidelines. In addition, there is also a lack of tools to support the variability management and customization of automated case tests for SPLs. In this context, this dissertation has the goal of proposing a systematic approach to software product line testing. The approach offers: (i) automated SPL test strategies to be applied in the domain and application engineering, (ii) explicit guidelines to support the implementation and reuse of automated test cases at the unit, integration and system levels in domain and application engineering; and (iii) tooling support for automating the variability management and customization of test cases. The approach is evaluated through its application in a software product line for web systems. The results of this work have shown that the proposed approach can help the developers to deal with the challenges imposed by the characteristics of SPLs during the testing process
Resumo:
A great challenge of the Component Based Development is the creation of mechanisms to facilitate the finding of reusable assets that fulfill the requirements of a particular system under development. In this sense, some component repositories have been proposed in order to answer such a need. However, repositories need to represent the asset characteristics that can be taken into account by the consumers when choosing the more adequate assets for their needs. In such a context, the literature presents some models proposed to describe the asset characteristics, such as identification, classification, non-functional requirements, usage and deployment information and component interfaces. Nevertheless, the set of characteristics represented by those models is insufficient to describe information used before, during and after the asset acquisition. This information refers to negotiation, certification, change history, adopted development process, events, exceptions and so on. In order to overcome this gap, this work proposes an XML-based model to represent several characteristics, of different asset types, that may be employed in the component-based development. Besides representing metadata used by consumers, useful for asset discovering, acquisition and usage, this model, called X-ARM, also focus on helping asset developers activities. Since the proposed model represents an expressive amount of information, this work also presents a tool called X-Packager, developed with the goal of helping asset description with X-ARM
Resumo:
The main goal of Regression Test (RT) is to reuse the test suite of the latest version of a software in its current version, in order to maximize the value of the tests already developed and ensure that old features continue working after the new changes. Even with reuse, it is common that not all tests need to be executed again. Because of that, it is encouraged to use Regression Tests Selection (RTS) techniques, which aims to select from all tests, only those that reveal faults, this reduces costs and makes this an interesting practice for the testing teams. Several recent research works evaluate the quality of the selections performed by RTS techniques, identifying which one presents the best results, measured by metrics such as inclusion and precision. The RTS techniques should seek in the System Under Test (SUT) for tests that reveal faults. However, because this is a problem without a viable solution, they alternatively seek for tests that reveal changes, where faults may occur. Nevertheless, these changes may modify the execution flow of the algorithm itself, leading some tests no longer exercise the same stretch. In this context, this dissertation investigates whether changes performed in a SUT would affect the quality of the selection of tests performed by an RTS, if so, which features the changes present which cause errors, leading the RTS to include or exclude tests wrongly. For this purpose, a tool was developed using the Java language to automate the measurement of inclusion and precision averages achieved by a regression test selection technique for a particular feature of change. In order to validate this tool, an empirical study was conducted to evaluate the RTS technique Pythia, based on textual differencing, on a large web information system, analyzing the feature of types of tasks performed to evolve the SUT
Resumo:
To date, different techniques of navigation for mobile robots have been developed. However, the experimentation of these techniques is not a trivial task because usually it is not possible to reuse the developed control software due to system incompabilities. This paper proposes a software platform that provides means for creating reusable software modules through the standardization of software interfaces, which represent the various robot modules. © 2012 ICROS.
Resumo:
Self-adaptive Software (SaS) presents specific characteristics compared to traditional ones, as it makes possible adaptations to be incorporated at runtime. These adaptations, when manually performed, normally become an onerous, error-prone activity. In this scenario, automated approaches have been proposed to support such adaptations; however, the development of SaS is not a trivial task. In parallel, reference architectures are reusable artifacts that aggregate the knowledge of architectures of software systems in specific domains. They have facilitated the development, standardization, and evolution of systems of those domains. In spite of their relevance, in the SaS domain, reference architectures that could support a more systematic development of SaS are not found yet. Considering this context, the main contribution of this paper is to present a reference architecture based on reflection for SaS, named RA4SaS (Reference Architecture for SaS). Its main purpose is to support the development of SaS that presents adaptations at runtime. To show the viability of this reference architecture, a case study is presented. As result, it has been observed that RA4SaS has presented good perspective to efficiently contribute to the area of SaS.
Resumo:
Abstract Background Over the last years, a number of researchers have investigated how to improve the reuse of crosscutting concerns. New possibilities have emerged with the advent of aspect-oriented programming, and many frameworks were designed considering the abstractions provided by this new paradigm. We call this type of framework Crosscutting Frameworks (CF), as it usually encapsulates a generic and abstract design of one crosscutting concern. However, most of the proposed CFs employ white-box strategies in their reuse process, requiring two mainly technical skills: (i) knowing syntax details of the programming language employed to build the framework and (ii) being aware of the architectural details of the CF and its internal nomenclature. Also, another problem is that the reuse process can only be initiated as soon as the development process reaches the implementation phase, preventing it from starting earlier. Method In order to solve these problems, we present in this paper a model-based approach for reusing CFs which shields application engineers from technical details, letting him/her concentrate on what the framework really needs from the application under development. To support our approach, two models are proposed: the Reuse Requirements Model (RRM) and the Reuse Model (RM). The former must be used to describe the framework structure and the later is in charge of supporting the reuse process. As soon as the application engineer has filled in the RM, the reuse code can be automatically generated. Results We also present here the result of two comparative experiments using two versions of a Persistence CF: the original one, whose reuse process is based on writing code, and the new one, which is model-based. The first experiment evaluated the productivity during the reuse process, and the second one evaluated the effort of maintaining applications developed with both CF versions. The results show the improvement of 97% in the productivity; however little difference was perceived regarding the effort for maintaining the required application. Conclusion By using the approach herein presented, it was possible to conclude the following: (i) it is possible to automate the instantiation of CFs, and (ii) the productivity of developers are improved as long as they use a model-based instantiation approach.
Resumo:
This thesis aims at investigating methods and software architectures for discovering what are the typical and frequently occurring structures used for organizing knowledge in the Web. We identify these structures as Knowledge Patterns (KPs). KP discovery needs to address two main research problems: the heterogeneity of sources, formats and semantics in the Web (i.e., the knowledge soup problem) and the difficulty to draw relevant boundary around data that allows to capture the meaningful knowledge with respect to a certain context (i.e., the knowledge boundary problem). Hence, we introduce two methods that provide different solutions to these two problems by tackling KP discovery from two different perspectives: (i) the transformation of KP-like artifacts to KPs formalized as OWL2 ontologies; (ii) the bottom-up extraction of KPs by analyzing how data are organized in Linked Data. The two methods address the knowledge soup and boundary problems in different ways. The first method provides a solution to the two aforementioned problems that is based on a purely syntactic transformation step of the original source to RDF followed by a refactoring step whose aim is to add semantics to RDF by select meaningful RDF triples. The second method allows to draw boundaries around RDF in Linked Data by analyzing type paths. A type path is a possible route through an RDF that takes into account the types associated to the nodes of a path. Then we present K~ore, a software architecture conceived to be the basis for developing KP discovery systems and designed according to two software architectural styles, i.e, the Component-based and REST. Finally we provide an example of reuse of KP based on Aemoo, an exploratory search tool which exploits KPs for performing entity summarization.
Resumo:
The increasing amount of data available about software systems poses new challenges for re- and reverse engineering research, as the proposed approaches need to scale. In this context, concerns about meta-modeling and analysis techniques need to be augmented by technical concerns about how to reuse and how to build upon the efforts of previous research. Moose is an extensive infrastructure for reverse engineering evolved for over 10 years that promotes the reuse of engineering efforts in research. Moose accommodates various types of data modeled in the FAMIX family of meta-models. The goal of this half-day workshop is to strengthen the community of researchers and practitioners who are working in re- and reverse engineering, by providing a forum for building future research starting from Moose and FAMIX as shared infrastructure.