966 resultados para single crystal epilayer
Resumo:
The total synthesis of the unusual sesquiterpene (+/-)-myltayl-4(12)-ene 3 starting from the readily available cyclogeraniol 5 and the single-crystal X-ray structure of the 4-nitrobenzoate 12 of the noralcohol 11 are described.
Resumo:
The recent development of several organic materials with large nonlinear susceptibilities, high damage threshold and low melting points encouraged researchers to employ these materials in fiber form to efficiently couple diode laser pumps and obtain enhanced second harmonic generation (SHG). In this paper we report the growth of single crystal cored fibers of 4-nitro-4'-methylbenzylidene aniline, ethoxy methoxy chalcone and (-)2-((alpha) -methylbenzylamino)-5- nitropyridine by inverted Bridgman-Stockbarger technique. The fibers were grown in glass capillaries with varying internal diameters and lengths and were characterized using x-ray and polarizing microscope techniques. The propagation loss at 632.8 nm and 1300 nm were measured and SHG was studied using 1064 nm pump.
Resumo:
C-70 films deposited on highly oriented pyrolytic graphite (HOPG), Ag(110), Ag(111) and Pt(110) substrates have been investigated by scanning tunnelling microscopy. Interesting observations on novel molecular arrangements, as well as orientational disorder, are presented. Solid solutions of C-60 and C-70 show interesting packing of these molecules when deposited on HOPG.
Resumo:
Single crystals of a-hopeite exhibiting high transparency were grown by single diffusion gel growth technique. Single crystal X-ray diffraction analysis reveals that the crystal belongs to orthorhombic system. The values of several structural and physical parameters have been determined for the grown crystal. The optical absorption study reveals the transparency of the crystal and is noticed in the entire visible region and the cut-off wavelength was found to be 230 nm. The optical band gap found to be at 3.25 eV. The dependence of extinction co-efficient (k) and the refractive index (n) on the wavelength was also shown. The dielectric constant and dielectric loss of the crystal was studied as a function of frequency and temperature. Transport properties of the grown crystal have been studied from the Cole-Cole plot. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Electronic and ionic conductivities of silver selenide crystal (Ag$_2+\delta$ Se) have been measured over a range of stoichiometry through the $\alpha - \beta$ transition by using solid state electrochemical techniques. In the high temperature $\beta$-phase Ag$_2$Se shows metallic behaviour of electronic conductivity for high values of $\delta$; with decrease in $\delta$, the conductivity of the material exhibits a transition. The magnitude of change in electronic conductivity at the $\alpha - \beta$ transition is also determined by stoichiometry. Ionic conductivity of the $\beta$-phase does not vary significantly with stochiometry. Ionic conductivity of the $\beta$-does not vary significantly with stoichiometry. A model to explain the observed transport properties has been suggested.
Resumo:
A novel size dependent FCC (face-centered-cubic) -> HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions < 20 are found unstable in nature, and they undergo a FCC -> HCP phase transformation, which is driven by tensile surface stress induced high internal compressive stresses. FCC nanowire with cross-sectional dimensions > 20 , in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC -> HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.
Resumo:
Large single crystal of triglycine sulphate (dimension 100 mm along monoclinic b-axis and 15 mm in diameter) was grown using the unidirectional solution growth technique. The X-ray diffraction studies confirmed the growth/long axis to be b-axis (polar axis). The dielectric studies were carried out at various temperatures to establish the phase transition temperature. The frequency response of the dielectric constant, dielectric loss and impedance of the crystal along the growth axis, was monitored. These are typically characterized by strong resonance peaks in the kHz region. The piezoelectric coefficients like stiffness constant (C), elastic coefficient (S), electromechanical coupling coefficient (k) and d (31) were calculated using the resonance-antiresonance method. Polarization (P)-Electric field (E) hysteresis loops were recorded at various temperatures to find the temperature-dependent spontaneous polarization of the grown crystal. The pyroelectric coefficients were determined from the pyroelectric current measurement by the Byer and Roundy method. The ferroelectric domain patterns were recorded on (010) plane using scanning electron microscopy and optical microscopy.
Resumo:
We have studied the magnetic field (H∥c) dependent rf dissipation (Hrf∥a) in an as-grown Bi2Sr2CaCu2O8 single crystal prior to and after irradiation with 250 MeV 107Ag17+ ions. In a comparison of the responses from the as-grown crystal with an air-annealed crystal, features due to oxygen deficient regions acting as weak links in the former are identified. These features disappear immediately after irradiation of the as-grown crystal. We attribute such behavior to the displacement of oxygen from columnar tracks to deficient regions thus eliminating the weak links. Losses from the same irradiated as-grown crystal stored at 300 K for 60 days show that the features similar but not identical to those observed in the pristine state have reappeared implying that the displaced oxygen is in a metastable configuration in the deficient regions and hence is mobile due to thermal effects even at 300 K.
Resumo:
We report the effect of surface treatments on the dynamic conductance curves (G=dI/dV‐V) of Au‐Bi2Sr2CaCu2O8+δ (single crystal) point contact junctions of variable junction conductances (100 mS≳G≳100 μS). We find that if the crystal surface is cleaved freshly just prior to making contacts, all irreproducible sharp multiple features often observed in tunneling data of Bi(2212) oxide superconductors disappear. If the cleaved crystal surfaces are left under ambient conditions for a few days and the tunneling experiments are repeated, these multiple features reappear. We also find that if the current in the junction is made to pass predominantly through the bulk (and not along the surface), gap features are sharper. The observed conductance curves are fitted to a modified model [G. E. Blonder et al., Phys. Rev. B 25, 4515 (1982)] and estimated gap values are Δ≂28 to 30 meV corresponding to the ratio 2Δ/kBTc ≂ 7.5 with lifetime broadening Γ/Δ≂0.2. We conclude that the sharp multiple features observed in Bi(2212) tunneling curves has no intrinsic origin in the bulk and they arise from the surface only.
Resumo:
Two copper-containing compounds [Cu(3)(mu(3)-OH)(2)-(H(2)O)(2){(SO(3))-C(6)H(3)-(COO)(2)}(CH(3)COO)] , I, and [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, II, were prepared using sulphoisophthalic and nitroisophthalic acids. The removal of the coordinated water molecules in the compounds was investigated using in situ single crystal to single crystal (SCSC) transformation studies, temperature-dependent powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The efficacy of SCSC transformation studies were established by the observation of dimensionality cross-over from a two-dimensional (I) to a three-dimensional structure, Cu(6)(mu(3)-OH)(4){(SO(3))-C(6)H(3)-(COO)(2)}(2)(CH(3)COO)(2), Ia, during the removal of the coordinated water molecules. Compound H exhibited a structural reorganization forming Cu(5)(mu(2)-OH)(2){(NO(2))C(6)H(3)-(COO)(2))(4)], Ha, possessing trimeric (Cu(3)O(12)) and dimeric (Cu(2)O(8)) copper clusters. The PXRD studies indicate that the three-dimensional structure (Ia) is transient and unstable, reverting back to the more stable two-dimensional structure (I) on cooling to room temperature. Compound Ha appears to be more stable at room temperature. The rehydration/dehydration studies using a modified TGA setup suggest complete rehydration of the water molecules, indicating that the water molecules in both compounds are labile. A possible model for the observed changes in the structures has been proposed. Magnetic studies indicate changes in the exchanges between the copper centers in Ha, whereas no such behavior was observed in Ia.
Resumo:
Taking polycrystalline cadmium as an example and by utilizing the predicted temperature or strain rate-dependence of the (Hall-Petch) stress-grain size parameters, a reasonably quantitative explanation is given for the grain size dependence of apparent activation volume measurements. The explanation involves the theoretical relation of these measurements to single-crystal measurements.
Resumo:
A dragonfly inspired flapping wing is investigated in this paper. The flapping wing is actuated from the root by a PZT-5H and PZN-7%PT single crystal unimorph in the piezofan configuration. The nonlinear governing equations of motion of the smart flapping wing are obtained using the Hamilton's principle. These equations are then discretized using the Galerkin method and solved using the method of multiple scales. Dynamic characteristics of smart flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. Finally, a comparative study of performances of three piezoelectrically actuated flapping wings is performed. The numerical results in this paper show that use of PZN-7%PT single crystal piezoceramic can lead to considerable amount of wing weight reduction and increase of lift and thrust force compared to PZT-5H material. It is also shown that dragonfly inspired smart flapping wings actuated by single crystal piezoceramic are a viable contender for insect scale flapping wing micro air vehicles.
Resumo:
Crystals of Boc-gamma y(4)(R)Val-Val-OH undergo a reversible first-order single crystal to single crystal phase transition at T-c approximate to 205 K from the orthorhombic space group P22(1)2(1) (Z' = 1) to the monoclinic space group P2(1) (Z' = 2) with a hysteresis of similar to 2.1 K. The low-temperature monoclinic form is best described as a nonmerohedral twin with similar to 50% contributions from its two components. The thermal behavior of the dipeptide crystals was characterized by differential scanning calorimetry experiments. Visual changes in birefringence of the sample during heating and cooling cycles on a hot-stage microscope with polarized light supported the phase transition. Variable-temperature unit cell check measurements from 300 to 100 K showed discontinuity in the volume and cell parameters near the transition temperature, supporting the first-order behavior. A detailed comparison of the room-temperature orthorhombic form with the low-temperature (100 K) monoclinic form revealed that the strong hydrogen-bonding motif is retained in both crystal systems, whereas the non-covalent interactions involving side chains of the dipeptide differ significantly, leading to a small change in molecular conformation in the monoclinic form as well as a small reorientation of the molecules along the ac plane. A rigid-body thermal motion analysis (translation, libration, screw; correlation of translation and libration) was performed to study the crystal entropy. The reversible nature of the phase transition is probably the result of an interplay between enthalpy and entropy: the low-temperature monoclinic form is enthalpically favored, whereas the room-temperature orthorhombic form is entropically favored.
Resumo:
The solvothermal reaction of CoCl(2)4H(2)O and 4,4-sulfonyldibenzoic acid (H(2)SDBA) resulted in the formation of a three-dimensional coordination polymer Co-3(C14H8O6S)(3)(DMA)(2)(MeOH)].DMA (Ia) consisting of trinuclear Co-3 oxo-cluster units. The Co-3 trimeric units are connected by SDBA(2-) anions leading to a three dimensional structure with a pcu topology. The terminal methanol molecules could be exchanged in a single crystal to single crystal (SCSC) fashion by other similar solvent molecules (ethanol, acetonitrile, water, ethyleneglycol). Magnetic studies on the parent compound, Ia, indicate antiferromagnetic interactions between the central metal atoms.
Resumo:
The reaction between 4,4'-sulfonyldibenzoic acid (H(2)SDBA) and manganese under mild conditions resulted in the isolation of two new three-dimensional compounds, Mn-4(C14H8O6S)(4)(DMA)(2)]center dot 3DMA, I, and Mn-3(C14H8O6S)(3)(DMA)(2)(MeOH)]center dot DMA, IIa. Both structures have Mn-3 trimer oxo cluster units. While the Mn-3 oxoclusters are connected through octahedral manganese forming one-dimensional Mn-O-Mn chains in I, the Mn-3 units are isolated in IIa. The SDBA units connect the Mn-O-Mn chains and the Mn-3 clusters giving rise to the three-dimensional structure. Both compounds have coordinated and free solvent molecules. In IIa, two different solvent molecules are coordinated, of which one solvent can be reversibly exchanged by a variety of other similar solvents via a solvent-mediated single crystal to single crystal (SCSC) transformation. The free lattice DMA solvent molecules in I can be exchanged by water molecules resulting in hydrophilic channels. Proton conductivity studies on I reveals a high proton mobility with conductivity values of similar to 0.87 x 10(-3) Omega(-1) cm(-1) at 34 degrees C and 98% RH, which is comparable to some of the good proton conductivity values observed in inorganic coordination polymers. We have also shown structural transformation of I to IIa through a possible dissolution and recrystallization pathway. In addition, both I and IIa appear to transform to two other manganese compounds H3O]Mn-3(mu(3)-OH)(C14H8O6S)(3)(H2O)](DMF)(5) and H3O](2)Mn-7(mu 3-OH)(4)(C14H8O6S)(6)(H2O)(4)](H2O)(2)(DMF)(8) under suitable reaction conditions. We have partially substituted Co in place of Mn in the Mn-3 trimer clusters forming CoMn2(C14H8O6S)(3)(DMA)(2)(EtOH)]center dot DMA, III, a structure that is closely related to IIa. All the compounds reveal antiferromagnetic behavior. On heating, the cobalt substituted phase (compound III) forms a CoMn2O4 spinel phase with particle sizes in the nanometer range.