976 resultados para short tandem repeat
Resumo:
Over the years, a wide range of methods to verify identity have been developed. Molecular markers have been used for identification since the 1920s, commencing with blood types and culminating with the advent of DNA techniques in the 1980s. Identification is required by authorities in many occasions, e.g. in disputed paternity cases, identification of deceased, or crime investigation. To clarify maternal and paternal lineages, uniparental DNA markers in mtDNA and Y-chromosome can be utilized. These markers have several advantages: male specific Y-chromosome can be used to identify a male from a mixture of male and female cells, e.g. in rape cases. MtDNA is durable and has a high copy number, allowing analyses even from old or degraded samples. However, both markers are lineage-specific, not individualizing, and susceptible to genetic drift. Prior to the application of any DNA marker in forensic casework, it is of utmost importance to investigate its qualities and peculiarities in the target population. Earlier studies on the Finnish population have shown reduced variation in the Y-chromosome, but in mtDNA results have been ambiguous. The obtained results confirmed the low diversity in Y-chromosome in Finland. Detailed population analysis revealed large regional differences, and extremely reduced diversity especially in East Finland. Analysis of the qualities affecting Y-chromosomal short tandem repeat (Y-STR) variation and mutation frequencies, and search of new polymorphic markers resulted a set of Y-STRs with especially high diversity in Finland. Contrary to Y-chromosome, neither reduced diversity nor regional differences were found in mtDNA within Finland. In fact, mtDNA diversity was found similar to other European populations. The revealed peculiarities in the uniparental markers are a legacy of the Finnish population history. The obtained results challenge the traditional explanation which emphasizes relatively recent founder effects creating the observed east-west patterns. Uniparentally inherited markers, both mtDNA and Y-chromosome, are applicable for identification purposes in Finland. By adjusting the analysed Y marker set to meet the characteristics of Finnish population, Y-chromosomal diversity increases and the regional differentiation decreases, resulting increase in discrimination power and thus usefulness of Y-chromosomal analysis in forensic casework.
Resumo:
Classical or transferase-deficient galactosaemia is an inherited metabolic disorder caused by mutation in the human Galactose-1-phosphate uridyl transferase (GALT) gene. Of some 170 causative mutations reported, fewer than 10% are observed in more than one geographic region or ethnic group. To better understand the population history of the common GALT mutations, we have established a haplotyping system for the GALT locus incorporating eight single nucleotide polymorphisms and three short tandem repeat markers. We analysed haplotypes associated with the three most frequent GALT gene mutations, Q188R, K285N and Duarte-2 (D2), and estimated their age. Haplotype diversity, in conjunction with measures of genetic diversity and of linkage disequilibrium, indicated that Q188R and K285N are European mutations. The Q188R mutation arose in central Europe within the last 20 000 years, with its observed east-west cline of increasing relative allele frequency possibly being due to population expansion during the re-colonization of Europe by Homo sapiens in the Mesolithic age. K285N was found to be a younger mutation that originated in Eastern Europe and is probably more geographically restricted as it arose after all major European population expansions. The D2 variant was found to be an ancient mutation that originated before the expansion of Homo sapiens out of Africa. Heredity (2010) 104, 148-154; doi:10.1038/hdy.2009.84; published online 29 July 2009
Resumo:
Ninety-one patients were studied serially for chimeric status following allogeneic stem cell transplantation (SCT) for severe aplastic anaemia (SAA) or Fanconi Anaemia (FA). Short tandem repeat polymerase chain reaction (STR-PCR) was used to stratify patients into five groups: (A) complete donor chimeras (n = 39), (B) transient mixed chimeras (n = 15) (C) stable mixed chimeras (n = 18), (D) progressive mixed chimeras (n = 14) (E) recipient chimeras with early graft rejection (n = 5). As serial sampling was not possible in Group E, serial chimerism results for 86 patients were available for analysis. The following factors were analysed for association with chimeric status: age, sex match, donor type, aetiology of aplasia, source of stem cells, number of cells engrafted, conditioning regimen, graft-versus-host disease (GvHD) prophylaxis, occurrence of acute and chronic GvHD and survival. Progressive mixed chimeras (PMCs) were at high risk of late graft rejection (n = 10, P <0.0001). Seven of these patients lost their graft during withdrawal of immunosuppressive therapy. STR-PCR indicated an inverse correlation between detection of recipient cells post-SCT and occurrence of acute GvHD (P = 0.008). PMC was a bad prognostic indicator of survival (P = 0.003). Monitoring of chimeric status during cyclosporin withdrawal may facilitate therapeutic intervention to prevent late graft rejection in patients transplanted for SAA.
Resumo:
A 41-year-old woman received a syngeneic BMT for CLL and subsequently developed acute skin GVHD. Transfusion-related allogeneic GVHD was excluded on the basis of an unchanged HLA type in circulating lymphocytes. Short tandem repeat PCR was used to confirm syngeneicity between donor and recipient. The patient had a personal and family history of autoimmune disease which may have made her particularly susceptible to development of syngeneic GVHD. The distinction between allogeneic and syngeneic or autologous GVHD is important because of therapeutic implications.
Resumo:
The severe combined immunodeficient (SCID) mouse model may be used to evaluate new approaches for the treatment of acute myeloid leukemia (AML). We have previously demonstrated the killing of SCID mouse leukemia initiating cells by in vitro incubation with human GM-CSF fused to Diphtheria toxin (DT-huGM-CSF). In this report, we show that in vivo treatment with DT-huGM-CSF eliminates AML growth in SCID mice. Seven cases of AML were studied. SCID mice were treated intraperitoneally with the maximally tolerated dose of 75 microg/kg/day for 7 days. Antileukemic efficacy was determined at days 40 and 80 after transplantation, by enumerating the percentages of human cells in SCID bone marrow using flow cytometry and short tandem repeat polymerase chain reaction (STR-PCR) analysis. Four out of seven AML cases were sensitive to in vivo treatment with DT-huGM-CSF at both evaluation time points. In three of these cases, elimination of human cells was demonstrated by flow cytometry and STR-PCR. One AML case showed moderate sensitivity for DT-huGM-CSF, and growth of the two remaining AML cases was not influenced by DT-huGM-CSF. Sensitivity was correlated with GM-CSFR expression. Our data show that DT-huGM-CSF can be used in vivo to reduce growth of AML and warrant further development of DT-huGM-CSF for the treatment of human AML.
Resumo:
Ex vivo T cell depletion of allogeneic grafts is associated with a high (up to 80%) rate of mixed chimerism (MC) posttransplantation. The number of transplanted progenitor cells is an important factor in achieving complete donor chimerism in the T cell depletion setting. Use of granulocyte colony-stimulating factor (G-CSF) peripheral blood allografts allows the administration of large numbers of CD34+ cells. We studied the chimeric status of 13 patients who received allogeneic CD34+-selected peripheral blood progenitor cell transplants (allo-PBPCTs/CD34+) from HLA-identical sibling donors. Patients were conditioned with cyclophosphamide (120 mg/kg) and total-body irradiation (13 Gy in four fractions). Apheresis products were T cell-depleted by the immunoadsorption avidin-biotin method. The median number of CD34+ and CD3+ cells infused was 2.8x10(6)/kg (range 1.9-8.6x10(6)/kg) and 0.4x10(6)/kg (range 0.3-1x10(6)/kg), respectively. Molecular analysis of the engraftment was performed using polymerase chain reaction (PCR) amplification of highly polymorphic short tandem repeat (PCR-STR) sequences in peripheral blood samples. MC was detected in two (15%) of 13 patients. These two patients relapsed at 8 and 10 months after transplant, respectively. The remaining 11 patients showed complete donor chimerism and were in clinical remission after a maximum follow-up period of 24 months (range 6-24 months). These results were compared with those obtained in 10 patients who were treated with T cell-depleted bone marrow transplantation by means of elutriation and who received the same conditioning treatment and similar amounts of CD3+ cells (median 0.45x10(6)/kg; not significant) but a lower number of CD34+ cells (median 0.8x10(6)/kg; p = 0.001). MC was documented in six of 10 patients (60%), which was significantly higher than in the allo-PBPCT/CD34+ group (p = 0.04). We conclude that a high frequency of complete donor chimerism is achieved in patients receiving allo-PBPCT/CD34+ and that this is most likely due to the high number of progenitor cells administered.
Resumo:
Donor-type microchimerism, the presence of a minority population of donor-derived haematopoietic cells following solid organ transplantation, has been postulated as a mechanism for induction of donor-specific graft tolerance. The stability, frequency, and relevance of microchimerism with respect to long-term outcome, however, remains uncertain. Using a polymerase chain reaction (PCR)-based method of microsatellite analysis of highly polymorphic short tandem repeat sequences (STRs) to detect donor-type cells, DNA from 11 patients was analyzed prospectively at specific time points for 12 months following liver transplantation, and from a further six patients retrospectively 2 years after liver transplantation. Using a panel of STRs, transient peripheral blood donor microchimerism was detected in 2 of 11 patients at a single time-point following transplantation, but persistent evidence of donor-derived cells was not observed during the study period. Analysis of DNA extracted from skin and duodenum in two patients likewise failed to show donor-type cells at these sites. None of the six patients in the retrospective arm showed donor microchimerism, resulting in an overall detection rate of 1.58%. These results suggest that donor microchimerism following liver transplantation is an infrequent event, and that the generation of graft tolerance is independent of microchimerism.
Resumo:
Chronic myeloid leukaemia (CML) can be treated successfully with allogeneic bone marrow transplantation (BMT) leading to long-term disease-free survival. Leukemia relapse, however, remains a significant clinical problem. Relapse following BMT presumably results from the expansion of small numbers of recipient leukaemic cells which have survived the conditioning therapy. In order to define patients who are at a high risk of leukaemia relapse, a variety of techniques have been employed to detect persistence of host haemopoiesis (mixed chimaerism, MC) or residual leukaemia (minimal residual disease, MRD). However, the precise relationship between the detection of MC and MRD post-BMT is unknown. We have investigated chimaerism and MRD status in 22 patients who were in clinical and haematological remission post-allogeneic BMT for chronic phase CML. Chimaerism was assessed using short tandem repeat PCR (STR-PCR) while BCR-ABL mRNA detection using reverse transcriptase polymerase chain reaction (RT-PCR) was performed to detect the presence of MRD. Seventeen patients received unmanipulated marrow (non-TCD) while in five patients a T cell-depleted transplant (TCD) was performed as additional GVHD prophylaxis. Chimaerism was evaluated in 18 patients (14 non-TCD, four TCD). Mixed chimaerism was an uncommon finding in recipients of unmanipulated BMT (21%) when compared to TCD BMT (100%). No evidence of MRD, as identified using the BCR-ABL mRNA RT-PCR assay, was detected in those patients who were donor chimaeras. Early and transient MC and MRD was detected in four patients (two non-TCD, two TCD) who have subsequently converted to a donor profile. One patient has stable low-level MC but remains MRD negative 4 years post-BMT. Late MC and MRD was observed in two patients who relapsed >6 years after TCD BMT for CML. We conclude that mixed chimaerism is a rare event in recipients of unmanipulated BMT and that donor chimaerism as detected by STR-PCR assay is consistent with disease-free survival and identifies patients with a low risk of leukaemic relapse post-BMT for CML.
Resumo:
Although Chronic Myeloid Leukaemia (CML) can be treated successfully with allogeneic bone marrow transplantation (BMT), leukaemia relapse remains a significant clinical problem. Molecular monitoring of the post transplant marrow can be useful in predicting relapse particularly in CML patients where the Philadelphia chromosome or its molecular counterpart, the BCR-ABL fusion messenger RNA can be used as a leukaemia specific marker of minimal residual disease (MRD). We have investigated chimaerism (using polymerase chain reaction of short tandem repeat sequences (STR-PCR)) and MRD status (using reverse transcriptase PCR of the BCR-ABL fusion mRNA) in a serial fashion in 18 patients who were in clinical and haematological remission post allogeneic BMT for chronic phase CML. Eleven patients exhibited complete donor chimaerism with no evidence of minimal residual disease. Five patients had transient or low level stable MC. Late MC and MRD was observed in two patients who relapsed > 6 years after T cell depleted BMT for CML. Thus STR-PCR is an appropriate screening test in the post transplant setting for CML patients, but those patients exhibiting mixed haemopoietic chimaerism should also be monitored using a leukaemia specific sensitive molecular assay.
Resumo:
Standard identification systems usually ensure that biopsy material is correctly associated with a given patient. Sometimes, as when a tumor is unexpectedly found, the provenance (proof of origin) of a tissue sample may be questioned; the tissue may have been mislabelled or contaminated with tissue from another patient. Techniques used to confirm tissue provenance include comparing either tissue markers of gender or ABO blood groups; however, these methods have weak confirmatory power. Recently, the use of DNA-based polymerase chain reaction (PCR) techniques has been reported. Paired, formalin-fixed, paraffin-embedded, 10 microns tissue sections were selected from 17 patients, 8 of whom had carcinoma, either by dividing a biopsy section, using sequential biopsies, or sequential biopsy and autopsy tissue. The resulting 36 samples were coded before analysis. In two additional cases, 1-mm fragments of tumor from one patient were included in the tissue block of benign tissue from another patient, the tumor fragments were identified on hematoxylin-and-eosin-stained sections, separately scraped off the glass slide, and analyzed. Tissue from two clinical cases, one of suspected mislabelling and one with a suspected carry-over of malignant tissue were also investigated. Short tandem repeat sequences (STR) or microsatellites, are 2-5 base pair repeats that vary in their repeat number between individuals. This variation (polymorphism) can be assessed using a PCR. A panel of markers of 3 STRs; ACPP, INT 2, and CYP 19 (on chromosomes 3, 11, and 15, respectively) were used. DNA was isolated from the samples after xylene deparaffinization and proteinase digestion, and was then amplified in a radioactive PCR using primers selected to give a product size ranging from 136-178 bases. Amplified products were electrophoresed on denaturing polyacrylamide gels, dried, and autoradiographed. DNA segments were successfully extracted from all samples but one, which was fixed in Bouin's fluid. By comparing allele sizes from the panel, all tissue pairs (other than the Bouin's pair) were successfully matched, the 1-mm tumor fragments were correctly assigned, and the two clinical problems were solved. STRs are highly informative and robust markers, well suited to PCR of small portions of tissue sections, and are an effective method to confirm the provenance of benign and malignant biopsy and autopsy material.
Resumo:
There has been recent interest in the use of X-chromosomal loci for forensic and relatedness testing casework, with many authors developing new X-linked short tandem repeat (STR) loci suitable for forensic use. Here we present formulae for two key quantities in paternity testing, the average probability of exclusion and the paternity index, which are suitable for Xchromosomal loci in the presence of population substructure.
Resumo:
This study describes the validation of short tandem repeat (STR) systems for the resolution of cases of disputed parentage where only a single parent is available for testing or where the claimed relationship of both parents is in doubt and also cases where sibship must be tested. Three separate multiplex systems the Second Generation Multiplex, Powerplex 1.2 and FFFL have been employed, giving a total of 16 STR loci. Both empirical and theoretical approaches to the validation have been adopted. Appropriate equations have been derived to calculate likelihood ratios for different relationships, incorporating a correction for subpopulation effects. An F(ST) point estimate of 1% has been applied throughout. Empirically, 101 cases of alleged father, alleged mother and child where analysed using six SLP systems and also using the three multiplex STR systems. Of the 202 relationships tested, 197 were independently resolved by both systems, providing either clear evidence of non-parentage or strong support for the relationship.
Resumo:
Os microsatélites, também chamados STRs (Short Tandem Repeat), são pequenas sequências de DNA que consistem numa sequência de repetições de um motivo que varia de um a seis pares de bases. Existem em quase todos os cromossomas humanos e podem situar-se nos exões ou nos intrões. Estes últimos são altamente polimórficos e são por isso utilizados na identificação de indivíduos em testes de paternidade e também em estudos de genética de populações. A combinação dos vários genótipos possíveis faz com que cada indivíduo possua um perfil único, que permite a sua identificação. Existem também microsatélites associados a exões ou a regiões promotoras dos genes, normalmente repetições trinucleotídicas CGG/CCG ou CAG/CTG, associados a doenças neurodegenerativas como a síndrome do X-frágil e a doença de Huntington. Neste trabalho caracterizaram-se geneticamente várias populações humanas dos arquipélagos da Madeira, Açores e Cabo Verde. A partir do estudo dos microsatélites do cromossoma Y, foram definidas idades de coalescência que permitiram concluir que as cópias do gene DAZ situado no cromossoma Y são o resultado de um processo evolutivo estando a sua evolução associada a alguns haplogrupos. Verificou-se também a ocorrência de possíveis mutações nos SNPs que definem os haplogrupos, através da comparação dos microsatélites do cromossoma Y dentro de cada haplogrupo, especialmente no haplogrupo E3b. Verificou-se existir uma associação entre o número de repetições CAG e GGC do gene Receptor de Androgénios (AR), situado no cromossoma X, e a infertilidade especialmente quando combinados os dois polimorfismos, parecendo haver um efeito protector dos alelos maiores e alguma susceptibilidade para os alelos menores. Quando se estudou o número de repetições GGC do gene FMR1 em doentes com suspeita de síndrome de X-frágil observaram-se diferenças significativas quando comparadas com a população em geral e com um grupo de sobredotados. Essa diferença deveu-se principalmente à presença do alelo 29 em quase todos os indivíduos do primeiro grupo o que por si só não constitui um factor de risco mas poderá ser uma indicação da associação deste alelo com outra mutação no mesmo gene que possa ser responsável por este fenótipo.
Resumo:
The analysis of mitochondrial DNA (mtDNA) is a useful tool in forensic cases when sample contents too little or degraded nuclear DNA to genotype by autosomal short tandem repeat (STR) loci, but it is especially useful when the only forensic evidence is a hair shaft. Several authors have related differences in mtDNA from different tissues within the same individual, with high frequency of heteroplasmic variants in hair, as also in some other tissues. Is still a matter of debate how the differences influence the interpretation forensic protocols. One difference between two samples supposed to be originated from the same individual are related to an inconclusive result, but depending on the tissue and the position of the difference it should have a different interpretation, based on mutation-rate heterogeneity of mtDNA. In order to investigate it differences in the mtDNA control region from hair hafts and blood in our population, sequences from the hypervariable regions 1 and 2 (HV1 and HV2) from 100 Brazilian unrelated individuals were compared. The frequency of point heteroplasmy observed in hair was 10.5% by sequencing. Our study confirms the results related by other authors that concluded that small differences within tissues should be interpreted with caution especially when analyzing hair samples. (C) 2007 Elsevier B.V.. All rights reserved.
Resumo:
Genetic population data for five X-STR (DXS6854, DXS7424, DXS101, DXS6808 and DXS7132) were obtained from Bauru population (São Paulo, Brazil). No deviations from the Hardy-Weinberg equilibrium were observed, with the exception of DXS101. The combined powers of discrimination in males and females were 0.99897253 and 0.99999120, respectively. These high values show the potential of this system in human identification and paternity testing. © 2008 Elsevier B.V. All rights reserved.