981 resultados para sensorineural hearing loss
Resumo:
Mutations in the GJB2 gene encoding the gap junction protein connexin 26 are responsible for up to 30% of all cases of autosomal recessive nonsyndromic hearing impairment (HI) with prelingual onset in most populations. The corresponding locus DFNB1, located on chromosome 13q11-q12, is also affected by three distinct deletions. These deletions extended distally to GJB2, which remains intact. We report a novel large deletion in DFNB1 observed in a patient presenting profound prelingual HI. This deletion was observed in trans to a GJB2 mutated allele carrying the p.Val84Met (V84M) mutation and was shown to be associated with hearing loss. The deletion caused a false homozygosity of V84M in the proband. Quantification of alleles by quantitative fluorescent multiplex PCR (QFM-PCR) enabled us to study the breakpoints of the deletion. The deleted segment extended through at least 920kb and removed the three connexin genes GJA3, GJB2 and GJB6. The distal breakpoint inside intron 2 of CRYL1 gene differed from the breakpoints of the known DFNB1 deletions. This case highlights the importance of screening for large deletions in molecular studies of GJB2.
Resumo:
Building on our discovery that mutations in the transmembrane serine protease, TMPRSS3, cause nonsyndromic deafness, we have investigated the contribution of other TMPRSS family members to the auditory function. To identify which of the 16 known TMPRSS genes had a strong likelihood of involvement in hearing function, three types of biological evidence were examined: 1) expression in inner ear tissues; 2) location in a genomic interval that contains a yet unidentified gene for deafness; and 3) evaluation of hearing status of any available Tmprss knockout mouse strains. This analysis demonstrated that, besides TMPRSS3, another TMPRSS gene was essential for hearing and, indeed, mice deficient for Hepsin (Hpn) also known as Tmprss1 exhibited profound hearing loss. In addition, TMPRSS2, TMPRSS5, and CORIN, also named TMPRSS10, showed strong likelihood of involvement based on their inner ear expression and mapping position within deafness loci PKSR7, DFNB24, and DFNB25, respectively. These four TMPRSS genes were then screened for mutations in affected members of the DFNB24 and DFNB25 deafness families, and in a cohort of 362 sporadic deaf cases. This large mutation screen revealed numerous novel sequence variations including three potential pathogenic mutations in the TMPRSS5 gene. The mutant forms of TMPRSS5 showed reduced or absent proteolytic activity. Subsequently, TMPRSS genes with evidence of involvement in deafness were further characterized, and their sites of expression were determined. Tmprss1, 3, and 5 proteins were detected in spiral ganglion neurons. Tmprss3 was also present in the organ of Corti. TMPRSS1 and 3 proteins appeared stably anchored to the endoplasmic reticulum membranes, whereas TMPRSS5 was also detected at the plasma membrane. Collectively, these results provide evidence that TMPRSS1 and TMPRSS3 play and TMPRSS5 may play important and specific roles in hearing.
Resumo:
The word "minimal" or "mild" hearing loss seems to imply that their effects are mild or negligible. The literature supports that they can have a significant impact on educative end educational development of young children and contribute to problems in fields of social function, communication and educational achievement. Unilateral hearing loss in children has been considered for long to be of little consequence. In fact it causes problems in speech and language development, speech understanding, especially in noisy environments, and school results. Early diagnosis, follow-up during preschool and school ages are mandatory.
Resumo:
Hearing loss can be caused by a variety of insults, including acoustic trauma and exposure to ototoxins, that principally effect the viability of sensory hair cells via the MAP kinase (MAPK) cell death signaling pathway that incorporates c-Jun N-terminal kinase (JNK). We evaluated the otoprotective efficacy of D-JNKI-1, a cell permeable peptide that blocks the MAPK-JNK signal pathway. The experimental studies included organ cultures of neonatal mouse cochlea exposed to an ototoxic drug and cochleae of adult guinea pigs that were exposed to either an ototoxic drug or acoustic trauma. Results obtained from the organ of Corti explants demonstrated that the MAPK-JNK signal pathway is associated with injury and that blocking of this signal pathway prevented apoptosis in areas of aminoglycoside damage. Treatment of the neomycin-exposed organ of Corti explants with D-JNKI-1 completely prevented hair cell death initiated by this ototoxin. Results from in vivo studies showed that direct application of D-JNKI-1 into the scala tympani of the guinea pig cochlea prevented nearly all hair cell death and permanent hearing loss induced by neomycin ototoxicity. Local delivery of D-JNKI-1 also prevented acoustic trauma-induced permanent hearing loss in a dose-dependent manner. These results indicate that the MAPK-JNK signal pathway is involved in both ototoxicity and acoustic trauma-induced hair cell loss and permanent hearing loss. Blocking this signal pathway with D-JNKI-1 is of potential therapeutic value for long-term protection of both the morphological integrity and physiological function of the organ of Corti during times of oxidative stress.
Resumo:
In mammals, damage to sensory receptor cells (hair cells) of the inner ear results in permanent sensorineural hearing loss. Here, we investigated whether postnatal mouse inner ear progenitor/stem cells (mIESCs) are viable after transplantation into the basal turns of neomycin-injured guinea pig cochleas. We also examined the effects of mIESC transplantation on auditory functions. Eight adult female Cavia porcellus guinea pigs (250-350g) were deafened by intratympanic neomycin delivery. After 7 days, the animals were randomly divided in two groups. The study group (n=4) received transplantation of LacZ-positive mIESCs in culture medium into the scala tympani. The control group (n=4) received culture medium only. At 2 weeks after transplantation, functional analyses were performed by auditory brainstem response measurement, and the animals were sacrificed. The presence of mIESCs was evaluated by immunohistochemistry of sections of the cochlea from the study group. Non-parametric tests were used for statistical analysis of the data. Intratympanic neomycin delivery damaged hair cells and increased auditory thresholds prior to cell transplantation. There were no significant differences between auditory brainstem thresholds before and after transplantation in individual guinea pigs. Some mIESCs were observed in all scalae of the basal turns of the injured cochleas, and a proportion of these cells expressed the hair cell marker myosin VIIa. Some transplanted mIESCs engrafted in the cochlear basilar membrane. Our study demonstrates that transplanted cells survived and engrafted in the organ of Corti after cochleostomy.
Resumo:
This paper presents information on the reliability of distortion product otoacoustic emissions in children with profound sensorineural hearing losses.
Resumo:
This paper discusses a survey undertaken to review information on hearing loss distributed by St. Louis area hospitals and pediatricians.
Resumo:
This dissertation examines the frequency response that results in the maximum level of speech intelligibility for persons with noise-induced hearing loss.
Resumo:
The purpose of this project was to determine if subjects with symmetrical hearing loss who prefer a monaural hearing aid fit to a binaural hearing aid fit may demonstrate an auditory processing disorder causing them to experience binaural interference when fit binaurally.
Resumo:
This Study examines the relationship between scores on adolescents’ self-generated narratives and standardized reading-comprehension scores. This relationship is also compared with the more simple language metrics: vocabulary and syntax.
Resumo:
The recent discovery of the contribution of alpha synuclein in the auditory system prompted further investigation of its functional role. Auditory brainstem response (ABR) and gap detection testing were completed on wild-type and transgenic M83 mice to assess the role of alpha synuclein in noise-induced hearing loss and central auditory function.
Resumo:
This paper reviews parental reactions to their newborn newly diagnosed with a hearing loss.
Resumo:
Literature and research were gathered and analyzed to determine the impact UHL has on a child’s education, speech and language development. The effects of early intervention and amplification were also analyzed.
Resumo:
This paper identifies risk factors associated with hearing loss in newborns, including family history, craniofacial abnormalities, and ototoxic medications.
Resumo:
This paper presents a study investigating how informed pediatricians are about hearing loss and their ability to assist and refer parents of children with hearing loss.