991 resultados para sensor technique
Resumo:
Chemically modified electrodes have been studied to obtain new and better electrochemical sensors. Transparent conductive oxides, such as fluorine-doped tin-oxide (FTO), shows electrical conductivity comparable to metals and are potential candidates for new sensors. In this work, FTO was modified by gold electrodeposition from chlorine-auric acid solution using cyclic voltammetry (CV) technique. A set of different materials were produced, varying the scan number. Scanning electron microscopy and electrochemical impedance spectroscopy were performed for the characterization of electrodes surfaces. From this analysis was possible to observe the resistive, capacitive and difusional aspects from all kind of modified electrodes produced, establishing a relationship between this parameters and the scan number. The electrode with 100 scans of CV presented better characteristics for an electrochemical sensor; it has the lowest global impedance and rising of capacitive behavior (related to electrical double layer formation) at lower frequencies. This electrode was tested for paracetamol and caffeine detection. The results showed a high specificity, decreased oxidation potential (0.58 V and 0.97 Vvs. SCE, for paracetamol and caffeine, respectively) and low detection limits (0.82 and 0.052 µmol L-1).
Resumo:
Objectif : Déterminer la fiabilité et la précision d’un prototype d’appareil non invasif de mesure de glucose dans le tissu interstitiel, le PGS (Photonic Glucose Sensor), en utilisant des clamps glycémiques multi-étagés. Méthodes : Le PGS a été évalué chez 13 sujets avec diabète de type 1. Deux PGS étaient testés par sujet, un sur chacun des triceps, pour évaluer la sensibilité, la spécificité, la reproductibilité et la précision comparativement à la technique de référence (le Beckman®). Chaque sujet était soumis à un clamp de glucose multi-étagé de 8 heures aux concentrations de 3, 5, 8 et 12 mmol/L, de 2 heures chacun. Résultats : La corrélation entre le PGS et le Beckman® était de 0,70. Pour la détection des hypoglycémies, la sensibilité était de 63,4%, la spécificité de 91,6%, la valeur prédictive positive (VPP) 71,8% et la valeur prédictive négative (VPN) 88,2%. Pour la détection de l’hyperglycémie, la sensibilité était de 64,7% et la spécificité de 92%, la VPP 70,8% et la VPN : 89,7%. La courbe ROC (Receiver Operating Characteristics) démontrait une précision de 0,86 pour l’hypoglycémie et de 0,87 pour l’hyperglycémie. La reproductibilité selon la « Clark Error Grid » était de 88% (A+B). Conclusion : La performance du PGS était comparable, sinon meilleure que les autres appareils sur le marché(Freestyle® Navigator, Medtronic Guardian® RT, Dexcom® STS-7) avec l’avantage qu’il n’y a pas d’aiguille. Il s’agit donc d’un appareil avec beaucoup de potentiel comme outil pour faciliter le monitoring au cours du traitement intensif du diabète. Mot clés : Diabète, diabète de type 1, PGS (Photonic Glucose Sensor), mesure continue de glucose, courbe ROC, « Clark Error Grid».
Resumo:
A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements
Resumo:
A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements.
Resumo:
A fibre optic technique for detecting trace amounts of nitrite compounds in water is described. The off-line fibre optic sensor outlined here is based on evanescent field absorption in a test solution formed by the reaction of nitrite compounds in water with suitable chemical reagents. A short unclad portion of a plastic clad silica fibre acts as the sensing region. The experimental results clearly establish the usefulness of the present technique for detecting very low concentrations of the order of 1 ppb (parts per billion) of nitrite compounds with a large dynamic range of 1–1000 ppb. Such a high sensitivity enables the present device to be used for measuring the nitrite content in drinking water.
Resumo:
A non-invasive technique is implemented to measure a parameter which is closely related to the distensibility of large arteries, using the second derivative of the infrared photoplethysmographic waveform. Thirty subjects within the age group of 20-61 years were involved in this pilot study. Two new parameters, namely the area of the photoplethysmographic waveform under the systolic peak, and the ratio of the time delay between the systolic and the diastolic peaks and the time period of the waveform ( T/T) were studied as a function of age. It was found that while the parameter which is supposed to be a marker of distensibility of large arteries and T /T values correlate negatively with age, the area under the systolic peak correlates positively with age. The results suggest that the derived parameters could provide a simple, non-invasive means for studying the changes in the elastic properties of the vascular system as a function of age.
Resumo:
Photoplethysmography (PPG) is a simple and inexpensive optical technique that can be used to detect blood volume changes in the microvascular bed of tissues. There has been a resurgence of interest in the technique in recent years, driven by the demand for low cost, simple and portable technology for the primary care and community based clinical settings and the wide availability of low cost and small semiconductor components, and the advancement of computer-based pulse wave analysis techniques. The present research work deals with the design of a PPG sensor for recording the blood volume pulse signals and carry out selected cardiovascular studies based on these signals. The interaction of light with tissue, early and recent history of PPG, instrumentation, measurement protocol and pulse wave analysis are also discussed in this study. The effect of aging, mild cold exposure, and variation in the body posture on the PPG signal have been experimentally studied.
Resumo:
A novel fibre optic sensor for the in situ measurement of the rate of deposition of thin films has been developed. Evanescent wave in the uncladded portion of a multimode fibre is utilised for this sensor development. In the present paper we demonstrate how this sensor is useful for the monitoring of the deposition rate of polypyrrole thin films, deposited by an AC plasma polymerisation method. This technique is simple, accurate and highly sensitive compared with existing techniques.
Resumo:
A simple, effective and inexpensive fiber optic sensor for investigating the setting characteristics of various grades of cement is described. A finite length of unsheathed multimode optical fiber laid inside the cement mix, is subjected to stress during the setting process. The microbends created on the fiber due to this stress directly influence the intensity of light propagating through the fiber. Continuous monitoring of such variations in the light output transmitted through the fiber gives a clear measure of the setting characteristics of the cement mix, thus providing a simple and elegant technique of great practical importance in the field of civil engineering. The smart fiber optic sensor described above can be incorporated into a building during the construction process itself so that continuous monitoring of the deterioration process for the entire life time of the building can be carried out.
Resumo:
The design and development of a cost-effective, simple, sensitive and portable LED based fiber optic evanescent wave sensor for simultaneously detecting trace amounts of chromium and nitrite in water are presented. In order to obtain the desired performance, the middle portions of two multimode plastic clad silica fibers are unclad and are used as the sensing elements in the two arms of the sensor. Each of the sensor arms is sourced by separate super bright green LEDs, which are modulated in a time-sharing manner and a single photo detector is employed for detecting these light signals. The performance and characteristics of this system clearly establish the usefulness of the technique for detecting very low concentrations of the dissolved contaminants.
Resumo:
The design and development of an evanescent wave sensor to determine the etching rate of the core of an optical fibre is discussed in this paper. The working of the device is based on the principle of propagation and loss of the evanescent wave in the cladding region of the fibre. The fraction of light intensity creeping out of the core of an uncladded fibre is a function of the core radius. As this radius decreases, the evanescent wave coupling to the medium surrounding the core enhances. This results in a decrease of the transmitted light intensity through the fibre. This technique is useful to design and fabricate optical fibres with different core geometries.
Resumo:
Clustering combined with multihop communication is a promising solution to cope with the energy requirements of large scale Wireless Sensor Networks. In this work, a new cluster based routing protocol referred to as Energy Aware Cluster-based Multihop (EACM) Routing Protocol is introduced, with multihop communication between cluster heads for transmitting messages to the base station and direct communication within clusters. We propose EACM with both static and dynamic clustering. The network is partitioned into near optimal load balanced clusters by using a voting technique, which ensures that the suitability of a node to become a cluster head is determined by all its neighbors. Results show that the new protocol performs better than LEACH on network lifetime and energy dissipation
Resumo:
Tunable Optical Sensor Arrays (TOSA) based on Fabry-Pérot (FP) filters, for high quality spectroscopic applications in the visible and near infrared spectral range are investigated within this work. The optical performance of the FP filters is improved by using ion beam sputtered niobium pentoxide (Nb2O5) and silicon dioxide (SiO2) Distributed Bragg Reflectors (DBRs) as mirrors. Due to their high refractive index contrast, only a few alternating pairs of Nb2O5 and SiO2 films can achieve DBRs with high reflectivity in a wide spectral range, while ion beam sputter deposition (IBSD) is utilized due to its ability to produce films with high optical purity. However, IBSD films are highly stressed; resulting in stress induced mirror curvature and suspension bending in the free standing filter suspensions of the MEMS (Micro-Electro-Mechanical Systems) FP filters. Stress induced mirror curvature results in filter transmission line degradation, while suspension bending results in high required filter tuning voltages. Moreover, stress induced suspension bending results in higher order mode filter operation which in turn degrades the optical resolution of the filter. Therefore, the deposition process is optimized to achieve both near zero absorption and low residual stress. High energy ion bombardment during film deposition is utilized to reduce the film density, and hence the film compressive stress. Utilizing this technique, the compressive stress of Nb2O5 is reduced by ~43%, while that for SiO2 is reduced by ~40%. Filters fabricated with stress reduced films show curvatures as low as 100 nm for 70 μm mirrors. To reduce the stress induced bending in the free standing filter suspensions, a stress optimized multi-layer suspension design is presented; with a tensile stressed metal sandwiched between two compressively stressed films. The stress in Physical Vapor Deposited (PVD) metals is therefore characterized for use as filter top-electrode and stress compensating layer. Surface micromachining is used to fabricate tunable FP filters in the visible spectral range using the above mentioned design. The upward bending of the suspensions is reduced from several micrometers to less than 100 nm and 250 nm for two different suspension layer combinations. Mechanical tuning of up to 188 nm is obtained by applying 40 V of actuation voltage. Alternatively, a filter line with transmission of 65.5%, Full Width at Half Maximum (FWHM) of 10.5 nm and a stopband of 170 nm (at an output wavelength of 594 nm) is achieved. Numerical model simulations are also performed to study the validity of the stress optimized suspension design for the near infrared spectral range, wherein membrane displacement and suspension deformation due to material residual stress is studied. Two bandpass filter designs based on quarter-wave and non-quarter-wave layers are presented as integral components of the TOSA. With a filter passband of 135 nm and a broad stopband of over 650 nm, high average filter transmission of 88% is achieved inside the passband, while maximum filter transmission of less than 1.6% outside the passband is achieved.
Resumo:
The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units, of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-Layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information Visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.
Resumo:
This study describes the development of amperometric sensors based on poly(allylamine hydrochloride) (PAH) and lutetium bisphthalocyanine (LuPc(2)) films assembled using the Layer-by-Layer (LbL) technique. The films have been used as modified electrodes for catechol quantification. Electrochemical measurements have been employed to investigate the catalytic properties of the LuPc(2) immobilized in the LbL films. By chronoamperometry, the sensors present excellent sensitivity (20 nA mu M(-1)) in a wide linear range (R(2) = 0.994) up to 900 mu M and limit of detection (s/n = 3) of 37.5 x 10(-8) M for catechol. The sensors have good reproducibility and can be used at least for ten times. The work potential is +0.3 V vs. saturated calomel electrode (SCE). In voltammetry measurements, the calibration curve shows a good linearity (R(2) = 0.992) in the range of catechol up to 500 mu M with a sensitivity of 90 nA mu M(-1) and LD of 8 mu M. (C) 2011 Elsevier B.V. All rights reserved.