940 resultados para second-order analysis
Resumo:
Both basic and applied research on the construction, implementation, maintenance, and evaluation of classification schemes is called classification theory. If we employ Ritzer’s metatheoretical method of analysis on the over one-hundred year-old body of literature, we can see categories of theory emerge. This paper looks at one particular part of knowledge organization work, namely classification theory, and asks 1) what are the contours of this intellectual space, and, 2) what have we produced in the theoretical reflection on con- structing, implementing, and evaluating classification schemes? The preliminary findings from this work are that classification theory can be separated into three kinds: foundational classification theory, first-order classification theory, and second-order classification theory, each with its own concerns and objects of study.
Resumo:
A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.
Resumo:
The asymptotic behavior of a class of coupled second-order nonlinear dynamical systems is studied in this paper. Using very mild assumptions on the vector-field, conditions on the coupling parameters that guarantee synchronization are provided. The proposed result does not require solutions to be ultimately bounded in order to prove synchronization, therefore it can be used to study coupled systems that do not globally synchronize, including synchronization of unbounded solutions. In this case, estimates of the synchronization region are obtained. Synchronization of two-coupled nonlinear pendulums and two-coupled Duffing systems are studied to illustrate the application of the proposed theory.
Resumo:
We give conditions on f involving pairs of lower and upper solutions which lead to the existence of at least three solutions of the two point boundary value problem y" + f(x, y, y') = 0, x epsilon [0, 1], y(0) = 0 = y(1). In the special case f(x, y, y') = f(y) greater than or equal to 0 we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and of Lakshmikantham et al.
Resumo:
In this work we study the existence and regularity of mild solutions for a damped second order abstract functional differential equation with impulses. The results are obtained using the cosine function theory and fixed point criterions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work is concerned with implicit second order abstract differential equations with nonlocal conditions. Assuming that the involved operators satisfy sonic compactness properties, we establish the existence of local mild solutions, the existence of global mild solutions and the existence of asymptotically almost periodic solutions.
Resumo:
We establish existence of mild solutions for a class of abstract second-order partial neutral functional differential equations with unbounded delay in a Banach space.
Resumo:
We establish existence results for solutions to three-point boundary value problems for nonlinear, second-order, ordinary differential equations with nonlinear boundary conditions. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We study difference equations which arise as discrete approximations to two-point boundary value problems for systems of second-order ordinary differential equations. We formulate conditions which guarantee a priori bounds on first differences of solutions to the discretized problem. We establish existence results for solutions to the discretized boundary value problems subject to nonlinear boundary conditions. We apply our results to show that solutions to the discrete problem converge to solutions of the continuous problem in an aggregate sense. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We give conditions on f involving pairs of discrete lower and discrete upper solutions which lead to the existence of at least three solutions of the discrete two-point boundary value problem yk+1 - 2yk + yk-1 + f (k, yk, vk) = 0, for k = 1,..., n - 1, y0 = 0 = yn,, where f is continuous and vk = yk - yk-1, for k = 1,..., n. In the special case f (k, t, p) = f (t) greater than or equal to 0, we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and Peterson and are in the spirit of our results for the continuous analogue. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We study the continuous problem y"=f(x,y,y'), xc[0,1], 0=G((y(0),y(1)),(y'(0), y'(1))), and its discrete approximation (y(k+1)-2y(k)+y(k-1))/h(2) =f(t(k), y(k), v(k)), k = 1,..., n-1, 0 = G((y(0), y(n)), (v(1), v(n))), where f and G = (g(0), g(1)) are continuous and fully nonlinear, h = 1/n, v(k) = (y(k) - y(k-1))/h, for k =1,..., n, and t(k) = kh, for k = 0,...,n. We assume there exist strict lower and strict upper solutions and impose additional conditions on f and G which are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. We show that the discrete approximation also has solutions which approximate solutions of the continuous problem and converge to the solution of the continuous problem when it is unique, as the grid size goes to 0. Homotopy methods can be used to compute the solution of the discrete approximation. Our results were motivated by those of Gaines.
Resumo:
Error condition detected We consider discrete two-point boundary value problems of the form D-2 y(k+1) = f (kh, y(k), D y(k)), for k = 1,...,n - 1, (0,0) = G((y(0),y(n));(Dy-1,Dy-n)), where Dy-k = (y(k) - Yk-I)/h and h = 1/n. This arises as a finite difference approximation to y" = f(x,y,y'), x is an element of [0,1], (0,0) = G((y(0),y(1));(y'(0),y'(1))). We assume that f and G = (g(0), g(1)) are continuous and fully nonlinear, that there exist pairs of strict lower and strict upper solutions for the continuous problem, and that f and G satisfy additional assumptions that are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. Under these assumptions we show that there are at least three distinct solutions of the discrete approximation which approximate solutions to the continuous problem as the grid size, h, goes to 0. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A series of new ruthenium(II) complexes of the general formula [Ru(eta(5)-C5H5)(PP)(L)][PF6] (PP = DPPE or 2PPh(3), L = 4-butoxybenzonitrile or N-(3-cyanophenyl)formamide) and the binuclear iron(II) complex [Fe(eta(5)-C5H5)(PP)(mu-L)(PP)(eta(5)-C5H5)Fe][PF6](2) (L = (E)-2-(3-(4-nitrophenyl)allylidene)malononitrile, that has been also newly synthesized) have been prepared and studied to evaluate their potential in the second harmonic generation property. All the new compounds were fully characterized by NMR, IR and UV-Vis spectroscopies and their electrochemistry behaviour was studied by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of three of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at fundamental wavelength of 1500 nm and the calculated static beta(0) values are found to fall in the range 65-212 x 10(-30) esu. Compound presenting beta(0) = 212 x 10(-30) esu has revealed to be 1.2 times more efficient than urea standard in the second harmonic generation (SHG) property, measured in the solid state by Kurtz powder technique, using a Nd:YAG laser (1064 nm). (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Despite the extensive literature in finding new models to replace the Markowitz model or trying to increase the accuracy of its input estimations, there is less studies about the impact on the results of using different optimization algorithms. This paper aims to add some research to this field by comparing the performance of two optimization algorithms in drawing the Markowitz Efficient Frontier and in real world investment strategies. Second order cone programming is a faster algorithm, appears to be more efficient, but is impossible to assert which algorithm is better. Quadratic Programming often shows superior performance in real investment strategies.