991 resultados para second image reversed


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Référence bibliographique : Rol, 57057

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The « reversed treatment» approach inverts the treatment sequence of¦advanced synchronous colorectal liver metastases - i.e. the liver metastasis is¦treated first, followed by resection of the primary tumor. Chemotherapy is performed¦before and after liver surgery. We recently started to use a reversed treatment¦approach in selected patients. The aim of this study is to critically assess this new¦treatment modality.¦Methods: Nine patients (7 male, 2 female, mean age 62 years) benefited from this¦new treatment between November 2008 and May 2010. The data were collected¦retrospectively.¦Results: All patients responded to the neoadjuvant chemotherapy. The median¦number of liver metastases was 6 (range 1 - 22). The median size of the largest liver¦metastases was 4.3 cm (range 2.6 - 13 cm). Three patients had portal vein¦embolization prior to liver surgery. Two patients could not complete the treatment.¦One had to undergo emergency surgery for occluding colonic tumor. The second one¦showed liver recurrence before starting the adjuvant chemotherapy. The seven¦patients who completed the treatment are still alive after a median time of 27 months¦(range 17 - 37 months). Seven of them had recurrence (1 rectal, 6 liver). The median¦disease-free survival was 9 months (range 0 - 17 months).¦Conclusion: Based on our preliminary experiences, the reversed strategy shows¦encouraging results for the treatment of advanced synchronous colorectal liver¦metastases in well selected patients. The treatment was generally well tolerated and¦long term survival seems to be prolonged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multichannel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research project investigated the use of image analysis to measure the air void parameters of concrete specimens produced under standard laboratory conditions. The results obtained from the image analysis technique were compared to results obtained from plastic air content tests, Danish air meter tests (also referred to as Air Void Analyzer tests), high-pressure air content tests on hardened concrete, and linear traverse tests (as per ASTM C-457). Hardened concrete specimens were sent to three different laboratories for the linear traverse tests. The samples that were circulated to the three labs consisted of specimens that needed different levels of surface preparation. The first set consisted of approximately 18 specimens that had been sectioned from a 4 in. by 4 in. by 18 in. (10 cm by 10 cm by 46 cm) beam using a saw equipped with a diamond blade. These specimens were subjected to the normal sample preparation techniques that were commonly employed by the three different labs (each lab practiced slightly different specimen preparation techniques). The second set of samples consisted of eight specimens that had been ground and polished at a single laboratory. The companion labs were only supposed to retouch the sample surfaces if they exhibited major flaws. In general, the study indicated that the image analysis test results for entrained air content exhibited good to strong correlation to the average values determined via the linear traverse technique. Specimens ground and polished in a single laboratory and then circulated to the other participating laboratories for the air content determinations exhibited the strongest correlation between the image analysis and linear traverse techniques (coefficient of determination, r-squared = 0.96, for n=8). Specimens ground and polished at each of the individual laboratories exhibited considerably more scatter (coefficient of determination, r-squared = 0.78, for n=16). The image analysis technique tended to produce low estimates of the specific surface of the voids when compared to the results from the linear traverse method. This caused the image analysis spacing factor calculations to produce larger values than those obtained from the linear traverse tests. The image analysis spacing factors were still successful at distinguishing between the frost-prone test specimens and the other (more durable) test specimens that were studied in this research project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evaluation of root traits may be facilitated if they are assessed on samples of the root system. The objective of this work was to determine the sample size of the root system in order to estimate root traits of common bean (Phaseolus vulgaris L.) cultivars by digital image analysis. One plant was grown per pot and harvested at pod setting, with 64 and 16 pots corresponding to two and four cultivars in the first and second experiments, respectively. Root samples were scanned up to the completeness of the root system and the root area and length were estimated. Scanning a root sample demanded 21 minutes, and scanning the entire root system demanded 4 hours and 53 minutes. In the first experiment, root area and length estimated with two samples showed, respectively, a correlation of 0.977 and 0.860, with these traits measured in the entire root. In the second experiment, the correlation was 0.889 and 0.915. The increase in the correlation with more than two samples was negligible. The two samples corresponded to 13.4% and 16.9% of total root mass (excluding taproot and nodules) in the first and second experiments. Taproot stands for a high proportion of root mass and must be deducted on root trait estimations. Samples with nearly 15% of total root mass produce reliable root trait estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tärkeä tehtävä ympäristön tarkkailussa on arvioida ympäristön nykyinen tila ja ihmisen siihen aiheuttamat muutokset sekä analysoida ja etsiä näiden yhtenäiset suhteet. Ympäristön muuttumista voidaan hallita keräämällä ja analysoimalla tietoa. Tässä diplomityössä on tutkittu vesikasvillisuudessa hai vainuja muutoksia käyttäen etäältä hankittua mittausdataa ja kuvan analysointimenetelmiä. Ympäristön tarkkailuun on käytetty Suomen suurimmasta järvestä Saimaasta vuosina 1996 ja 1999 otettuja ilmakuvia. Ensimmäinen kuva-analyysin vaihe on geometrinen korjaus, jonka tarkoituksena on kohdistaa ja suhteuttaa otetut kuvat samaan koordinaattijärjestelmään. Toinen vaihe on kohdistaa vastaavat paikalliset alueet ja tunnistaa kasvillisuuden muuttuminen. Kasvillisuuden tunnistamiseen on käytetty erilaisia lähestymistapoja sisältäen valvottuja ja valvomattomia tunnistustapoja. Tutkimuksessa käytettiin aitoa, kohinoista mittausdataa, minkä perusteella tehdyt kokeet antoivat hyviä tuloksia tutkimuksen onnistumisesta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TUTKIMUKSEN TAVOITTEET Tutkielman tavoitteena oli luoda ensin yleiskäsitys tuotemerkkimarkkinoinnin roolista teollisilla markkinoilla, sekä suhdemarkkinoinnin merkityksestä teollisessa merkkituotemarkkinoinnissa. Toisena oleellisena tavoitteena oli kuvata teoreettisesti merkkituoteidentiteetin rakenne teollisessa yrityksessä ja sen vaikutukset myyntihenkilöstöön, ja lisäksi haluttiin tutkia tuotemerkkien lisäarvoa sekä asiakkaalle että myyjälle. Identiteetti ja sen vaikutukset, erityisesti imago haluttiin tutkia myös empiirisesti. LÄHDEAINEISTO JA TUTKIMUSMENETELMÄT Tämän tutkielman teoreettinen osuus perustuu kirjallisuuteen, akateemisiin julkaisuihin ja aikaisempiin tutkimuksiin; keskittyen merkkituotteiden markkinointiin, identiteettiin ja imagoon, sekä suhdemarkkinointiin osana merkkituotemarkkinointia. Tutkimuksen lähestymistapa on kuvaileva eli deskriptiivinen ja sekä kvalitatiivinen että kvantitatiivinen. Tutkimus on tapaustutkimus, jossa caseyritykseksi valittiin kansainvälinen pakkauskartonki-teollisuuden yritys. Empiirisen osuuden toteuttamiseen käytettiin www-pohjaista surveytä, jonka avulla tietoja kerättiin myyntihenkilöstöltä case-yrityksessä. Lisäksi empiiristä osuutta laajennettiin tutkimalla sekundäärilähteitä kuten yrityksen sisäisiä kirjallisia dokumentteja ja tutkimuksia. TULOKSET. Teoreettisen ja empiirisen tutkimuksen tuloksena luotiin malli jota voidaan hyödyntää merkkituotemarkkinoinnin päätöksenteon tukena pakkauskartonki-teollisuudessa. Teollisen brandinhallinnan tulee keskittyä erityisesti asiakas-suhteiden brandaukseen – tätä voisi kutsua teolliseksi suhdebrandaukseksi. Tuote-elementit ja –arvot, differointi ja positiointi, sisäinen yrityskuva ja viestintä ovat teollisen brandi-identiteetin peruskiviä, jotka luovat brandi-imagon. Case-yrityksen myyntihenkilöstön tuote- ja yritysmielikuvat osoittautuivat kokonaisuudessaan hyviksi. Paras imago on CKB tuotteilla, kun taas heikoin on WLC tuotteilla. Teolliset brandit voivat luoda monenlaisia lisäarvoja sekä asiakas- että myyjäyritykselle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. METHODS: The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. RESULTS: The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. CONCLUSION: The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality at CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality of CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.