992 resultados para screened Coulomb potential


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Despite the technologic advances, radiation dermatitis is still a prevalent and distressing symptom in patients with cancer undergoing radiotherapy. Systematic reviews (SRs) are regarded as level I evidence providing direction for clinical practice and guidelines. This overview aims to provide a critical appraisal of SRs published on interventions for the prevention/management of radiation dermatitis. Methodology: We searched the following electronic databases: MEDLINE, CINAHL, EMBASE, and the Cochrane Library (up to Feb 2012). We also hand-searched reference lists of potentially eligible articles and a number of key journals in the area. Two authors screened all potential articles and included eligible SRs. Two authors critically appraised and extracted key findings from the included reviews using the “A Measurement Tool to Assess Systematic Reviews” (AMSTAR). Results: Of 1837 potential titles, six SRs were included. A number of interventions have been reported to be potentially beneficial for managing radiation dermatitis. Interventions evaluated in these reviews included skin care advice, steroidal/non-steroidal topical agents, systematic therapies, modes of radiation delivery, and dressings. However, all the included SRs reported that there is insufficient evidence supporting any single effective intervention. The methodological quality of the included studies varied, and methodological shortfalls in these reviews may create biases to the overall results or recommendations for clinical practice. Conclusions and implications: An up-to-date high quality SR in preventing/managing radiation dermatitis is needed to guide practice and direction for future research. Clinicians or guideline developers are recommended to critically evaluate the information of SRs in their decision making.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In (2+1)-dimensional quantum electrodynamics with massless photons and massive matter fields, it is shown that the mass renormalization of the latter is infrared divergent at one loop. This result remains unchanged at two loops. A simple argument based on a similar divergence of the Coulomb potential leads us to conjecture that charged states are not observable in this model. This argument holds in 1+1 dimensions also.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Micelles of different dimeric amphiphiles Br-, n-C(16)H(33)NMe(2)(+) -(CH)(m)-N(+)Me(2)-n-C16H33, Br- (where m = 3, 4, 5, 6, 8, 10, and 12) adapt different morphologies and internal packing arrangements in aqueous media depending on their spacer chain length (m). Detailed measurements of small angle neutron scattering (SANS) cross sections from different bis-cationic, dimeric surfactant micelles in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric micelles. The SANS analysis clearly indicated that the extent of aggregate growth and the variations of shapes of the dimeric micelles depend primarily on the spacer chain length. With spacer chain length, m less than or equal to 4, the propensity of micellar growth was particularly pronounced. The effects of the variation of the concentration of dimeric surfactants with m = 5 and 10 on the SANS spectra and the effects of the temperature variation for the micellar system with m = 10 were also examined. The critical micelle concentrations (cmc) and their microenvironmental feature, namely, the microviscosities that the dimeric micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were also determined. The changes of cmcs and microviscosities as a function of spacer chain length have been explained in terms of conformational variations and progressive looping of the spacer in micellar core upon increasing m values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that the problem of two anyons interacting through a simple harmonic potential or a Coulomb potential is supersymmetric. The supersymmetry operators map a theory described by statistics parameter θ to one described by π+θ. Thus fermions and bosons go into each other, while semions are supersymmetric by themselves. The simple harmonic problem has a Sp(4) symmetry for any value of θ which explains the energy degeneracies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurements of small-angle neutron scattering (SANS) cross sections from different mixed micelles composed of CTAB and Br-, n-C16H33N+Me2-(CH2)(m)N+Me2-n-C16H33, Br- (16-m-16, 2Br(-), where m = 3, 5, and 10), in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macroion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the micelles. The aggregate composition matches with that predicted from an ideal mixing model. The SANS analysis further indicates that the extent of aggregate growth and the Variations of shapes of the mixed micelles could be modulated by the amount of dimeric surfactant present in these mixtures. With the spacer chain length m less than or equal to 4 in the dimeric surfactant, the propensity of micellar growth is particularly pronounced. The effect of the variation of the temperature for the mixed micellar system (23.1 mol % of 16-3-16, 2Br(-)) was also examined. The systemic microviscosities that the mixed micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were determined. The variation of the microviscosities of the mixed micelles as a function of percentages of the dimeric surfactants could be explained in terms of conformational variations and progressive looping of the spacer chain of dimeric surfactants in mixed micellar aggregates with increasing m values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present low-temperature electrical transport experiments in five field-effect transistor devices consisting of monolayer, bilayer, and trilayer MoS(2) films, mechanically exfoliated onto Si/SiO(2) substrate. Our experiments reveal that the electronic states In all films are localized well up to room temperature over the experimentally accessible range of gate voltage. This manifests in two-dimensional (2D) variable range hopping (VRH) at high temperatures, while below similar to 30 K, the conductivity displays oscillatory structures In gate voltage arising from resonant tunneling at the localized sites. From the correlation energy (T(0)) of VRH and gate voltage dependence of conductivity, we suggest that Coulomb potential from trapped charges In the substrate is the dominant source of disorder in MoS(2) field-effect devices, which leads to carrier localization, as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Planar imidazolium cation based gemini surfactants 16-Im-n-Im-16], 2Br(-) (where n = 2, 3, 4, 5, 6, 8, 10, and 12), exhibit different morphologies and internal packing arrangements by adopting different supramolecular assemblies in aqueous media depending on their number of spacer methylene units (CH2)(n). Detailed measurements of the small-angle neutron-scattering (SANS) cross sections from different imidazolium-based surfactant micelles in aqueous media (D2O) are reported. The SANS data, containing the information of aggregation behavior of such surfactants in the molecular level, have been analyzed on the basis of the Hayter and Penfold model for the macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric surfactant micelles. The characteristic changes in the SANS spectra of the dimeric surfactant with n = 4 due to variation of temperature have also been investigated. These data are then compared with the SANS characterization data of the corresponding gemini micelles containing tetrahedral ammonium ion based polar headgroups. The critical micellar concentration of each surfactant micelle (cmc) has been determined using pyrene as an extrinsic fluorescence probe. The variation of cmc as a function of spacer chain length has been explained in terms of conformational variation and progressive looping of the spacer into the micellar interior upon increasing the n values. Small-angle neutron-scattering (SANS) cross sections from different mixed micelles composed of surfactants with ammonium headgroups, 16-A(0), 16-Am-n-Am-16], 2Br(-) (where n = 4), 16-I-0, and 16-Im-n-Im-16], 2Br(-) (where n = 4), in aqueous media (D2O) have also been analyzed. The aggregate composition matches with that predicted from the ideal mixing model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum wires with spin-orbit coupling provide a unique opportunity to simultaneously control the coupling strength and the screened Coulomb interactions where new exotic phases of matter can be explored. Here we report on the observation of an exotic spin-orbit density wave in Pb-atomic wires on Si(557) surfaces by mapping out the evolution of the modulated spin-texture at various conditions with spin-and angle-resolved photoelectron spectroscopy. The results are independently quantified by surface transport measurements. The spin polarization, coherence length, spin dephasing rate and the associated quasiparticle gap decrease simultaneously as the screened Coulomb interaction decreases with increasing excess coverage, providing a new mechanism for generating and manipulating a spin-orbit entanglement effect via electronic interaction. Despite clear evidence of spontaneous spin-rotation symmetry breaking and modulation of spin-momentum structure as a function of excess coverage, the average spin polarization over the Brillouin zone vanishes, indicating that time-reversal symmetry is intact as theoretically predicted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The triggering of wave-breaking in a three-dimensional laser plasma wake (bubble) is investigated. The Coulomb potential from a nanowire is used to disturb the wake field to initialize the wave-breaking. The electron acceleration becomes more stable and the laser power needed for self-trapping is lowered. Three-dimensional particle-in-cell simulations were performed. Electrons with a charge of about 100 pC can be accelerated stably to energy about 170 MeV with a laser energy of 460 mJ. The first step towards tailoring the electron beam properties such as the energy, energy spread, and charge is discussed. (C) 2007 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Part I

Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.

The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.

Part II

A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.

The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.

Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the investigation of temperature and excitation power dependence in photoluminescence spectroscopy measured in Mg-doped GaN epitaxial layers grown on sapphire by metalorganic chemical vapor deposition, The objective is to examine the effects of rapid-thermal annealing on Mg-related emissions. It is observed that the peak position of the 2.7-2.8 eV emission line is a function of the device temperature and annealing conditions, The phenomenon is attributed to Coulomb-potential fluctuations in the conduction and valence band edge and impurity levels due to the Mg-related complex dissociation. The blue shift of the 2.7-2.8 eV emission line with increasing excitation power provides clear evidence that a donor-acceptor recombination process underlies the observed emission spectrum. In addition, quenching of minor peaks at 3.2 and 3.3 eV are observed and their possible origin is discussed. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Highly charged ions (HCls) carrying high Coulomb potential energy (E-p) could cause great changes in the physical and chemical properties of material surface when they bombard on the solid surface. In our work, the secondary ion yield dependence on highly charged Pbq+ (q = 4-36) bombardment on Al surface has been investigated. Aluminum films (99.99%) covered with a natural oxide film was chosen as our target and the kinetic energy (E-k) was varied between 80 keV and 400 keV. The yield with different incident angles could be described well by the equation developed by us. The equation consists of two parts due to the kinetic sputtering and potential sputtering. The physical interpretations of the coefficients in the said equation are discussed. Also the results on the kinetic sputtering produced by the nuclear energy loss on target Surface are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within the framework of the improved isospin-dependent quantum molecular dynamics model, the dynamics of pion emission in heavy-ion collisions in the region of 1A GeV energies as a probe of nuclear symmetry energy at suprasaturation densities is investigated systematically. The total pion multiplicities and the pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6, Ska, and SIII and also for the cases of different stiffness of symmetry energy with the parameter SLy6. The influence of Coulomb potential, symmetry energy, and in-medium pion potential on the pion production is investigated and compared to each other by analyzing the distributions of transverse momentum and longitudinal rapidity and also the excitation functions of the total pion and the pi(-)/pi(+) ratio. The directed flow, elliptic flow, and polar-angle distributions are calculated for the cases of different collision centralities and also the various stiffnesses of the symmetry energies. A comparison of the calculations with the available experimental data is performed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we describe experimental results on angularly resolved x-ray scatter from a sample of warm dense aluminium that has been created by double sided laser-driven shock compression. The experiment was carried out on the Central Laser Facility of the Rutherford Appleton Laboratory, using the VULCAN laser. The form of the angularly resolved scatter cross-section was compared with predictions based on a series of molecular dynamics simulations with an embedded atom potential, a Yukakwa potential and a bare Coulomb potential. The importance of screening is evident from the comparison and the embedded atom model seems to match experiment better than the Yukawa potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La demande croissante en carburants, ainsi que les changements climatiques dus au réchauffement planétaire poussent le monde entier à chercher des sources d’énergie capables de produire des combustibles alternatifs aux combustibles fossiles. Durant les dernières années, plusieurs sources potentielles ont été identifiées, les premières à être considérées sont les plantes oléagineuses comme source de biocarburant, cependant l’utilisation de végétaux ou d’huiles végétales ayant un lien avec l’alimentation humaine peut engendrer une hausse des prix des denrées alimentaires, sans oublier les questions éthiques qui s’imposent. De plus, l'usage des huiles non comestibles comme sources de biocarburants, comme l’huile de jatropha, de graines de tabac ou de jojoba, révèle un problème de manque de terre arable ce qui oblige à réduire les terres cultivables de l'industrie agricole et alimentaire au profit des cultures non comestibles. Dans ce contexte, l'utilisation de microorganismes aquatiques, tels que les microalgues comme substrats pour la production de biocarburant semble être une meilleure solution. Les microalgues sont faciles à cultiver et peuvent croitre avec peu ou pas d'entretien. Elles peuvent ainsi se développer dans des eaux douces, saumâtres ou salées de même que dans les terres non cultivables. Le rendement en lipide peut être largement supérieur aux autres sources de biocarburant potentiel, sans oublier qu’elles ne sont pas comestibles et sans aucun impact sur l'industrie alimentaire. De plus, la culture intensive de microalgues pour la production de biodiesel pourrait également jouer un rôle important dans l'atténuation des émissions de CO2. Dans le cache de ce travail, nous avons isolé et identifié morphologiquement des espèces de microalgues natives du Québec, pour ensuite examiner et mesurer leur potentiel de production de lipides (biodiesel). L’échantillonnage fut réalisé dans trois régions différentes du Québec: la région de Montréal, la gaspésie et le nord du Québec, et dans des eaux douces, saumâtres ou salées. Cent souches ont été isolées à partir de la région de Montréal, caractérisées et sélectionnées selon la teneur en lipides et leur élimination des nutriments dans les eaux usées à des températures différentes (10 ± 2°C et 22 ± 2°C). Les espèces ayant une production potentiellement élevée en lipides ont été sélectionnées. L’utilisation des eaux usées, comme milieu de culture, diminue le coût de production du biocarburant et sert en même temps d'outil pour le traitement des eaux usées. Nous avons comparé la biomasse et le rendement en lipides des souches cultivées dans une eau usée par apport à ceux dans un milieu synthétique, pour finalement identifié un certain nombre d'isolats ayant montré une bonne croissance à 10°C, voir une teneur élevée en lipides (allant de 20% à 45% du poids sec) ou une grande capacité d'élimination de nutriment (>97% d'élimination). De plus, nous avons caractérisé l'une des souches intéressantes ayant montré une production en lipides et une biomasse élevée, soit la microalgue Chlorella sp. PCH90. Isolée au Québec, sa phylogénie moléculaire a été établie et les études sur la production de lipides en fonction de la concentration initiale de nitrate, phosphate et chlorure de sodium ont été réalisées en utilisant de la méthodologie des surfaces de réponse. Dans les conditions appropriées, cette microalgue pourrait produire jusqu'à 36% de lipides et croitre à la fois dans un milieu synthétique et un milieu issu d'un flux secondaire de traitement des eaux usées, et cela à 22°C ou 10°C. Ainsi, on peut conclure que cette souche est prometteuse pour poursuivre le développement en tant que productrice potentielle de biocarburants dans des conditions climatiques locales.