985 resultados para rotational constants


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the polyoxides HOOH, HOOOH, HOOOOH, and HOOO employing the CCSD(T) methodology, and the correlation consistent basis sets. For all molecules, we have computed fundamental vibrational frequencies, structural parameters, rotational constants, and rotation-vibration corrections. For HOOOH, we have obtained a good agreement between our results and microwave and infrared spectra measurements, although for the symmetric OO stretch some important differences were found. Heats of formation were computed using atomization energies, and our recommendation is as follows: Delta H degrees(f,298)(HOOOH) = -21.50 kcal/mol and Delta H degrees(f,298)(HOOOOH) = -10.61 kcal/mol. In the case of HOOO, to estimate the heat of formation, we have constructed three isodesmic reactions to cancel high order correlation effects. The results obtained confirmed that the latter effects are very important for HOOO. The new Delta H degrees(f,298)(HOOO) obtained is 5.5 kcal/mol. We have also calculated the zero-point energies of DO and DOOO to correct the experimental lower limit determined for the Delta H degrees(f,298)(HOOO). The Delta(Delta ZPE) decreases the binding energy of HOOO by 0.56 kcal/mol. Employing the latter value, the new experimental lower limit for Delta H degrees(f,298)(HOOO) is 3.07 kcal/mol, just 2.4 kcal/mol lower than our determination. We expect that the fundamental vibrational frequencies and rotational constants determined for HOOOOH and DOOOOD contribute to its identification in the gas phase. The vibrational spectrum of HOOOOH shows some overlapping with that of HOOOH thus indicating that one may encounter some difficulties in its characterization. We discuss the consequences of the thermochemical properties determined in this work, and suggest that the amount of HOOO present in the atmosphere is smaller than that proposed recently in this journal (J. Phys. Chem A 2007, 111, 4727).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

B3LYP/6-31 + + G** and MP2/6-31 + + G** calculations have been carried out to study six tautomers of the nucleic acid base cytosine in aqueous media. Solvent effects have been analyzed using the self-consistent reaction field theory with two continuum methods. Relative stabilities and optimized geometries have been calculated for the tautomers and compared with experimental data. The present results show the importance of electrostatic solvent effects in determining observable properties of the cytosine tautomers. The amino-oxo form (C1) is the most abundant tautomer in aqueous media while the other amino-oxo form (C4) is the most energetically favored when solvent effects are included. These results can be justified by the larger values of the dipole moments for both C1 and C4 tautomers. Theoretical and experimental results of the harmonic vibrational frequencies and rotational constants show good agreement. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some cyanopolyynes, HCnN (n = 1, 3, ... , 17), are investigated by means of calculations at the MP2/cc-pVTZ and CCSD/cc-pVDZ levels. Although the MP2/cc-pVTZ results for geometries and molecular dipole moments are encouraging, the CCSD/cc-pVDZ level was superior for the study of infrared fundamental intensities. The main bands are also analyzed with a charge-charge flux-dipole flux (CCFDF) partition model based on quantities given by the Quantum Theory of Atoms in Molecules (QTAIM). The intensity of vibrations corresponding to the stretching of CH bonds (3471-3473 cm(-1)) increases in line with the number of carbon atoms (from 61 to 146 km mol(-1) between HCN and HC13N). This increase is due to the charge flux contribution while the other contributions remain roughly unaltered except for HCN. Moreover, the hydrogen atom loses an almost constant amount of electronic charge during the CH bond enlargement and a small fraction of this charge spreads to atoms farther and farther away from hydrogen as the molecule size increases. The band associated with the doubly degenerate CH bending vibrations (643-732 cm(-1)) presents approximately the same intensity in all the studied cyanopolyynes (from 67 to 76 km mol(-1)). The CCFDF/QTAIM contributions are also nearly the same for these bending modes in HC5N and larger systems. The intensity of the mode mostly identified as CN stretching (around 2378-2399 cm(-1) except for HCN) increases from HCN up to HC7N (from 0.3 to 83 km mol(-1)) and nearly stabilizes around 80-90 km mol(-1) for larger systems. The CCFDF/QTAIM contributions for this mode also change significantly up to HC7N and remain almost constant in larger systems. We also observed the appearing of a very relevant band between 2283 and 2342 cm(-1). This mode is mainly associated with the symmetric stretching of CC triple bonds near the molecule center and exhibits large charge fluxes while the other contributions are almost negligible in the largest cyanopolyynes. The two vibrational bands associated with the smallest frequencies are also studied and extrapolation equations are suggested to predict their positions in larger cyanopolyynes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coupled-cluster theory provides one of the most successful concepts in electronic-structure theory. This work covers the parallelization of coupled-cluster energies, gradients, and second derivatives and its application to selected large-scale chemical problems, beside the more practical aspects such as the publication and support of the quantum-chemistry package ACES II MAB and the design and development of a computational environment optimized for coupled-cluster calculations. The main objective of this thesis was to extend the range of applicability of coupled-cluster models to larger molecular systems and their properties and therefore to bring large-scale coupled-cluster calculations into day-to-day routine of computational chemistry. A straightforward strategy for the parallelization of CCSD and CCSD(T) energies, gradients, and second derivatives has been outlined and implemented for closed-shell and open-shell references. Starting from the highly efficient serial implementation of the ACES II MAB computer code an adaptation for affordable workstation clusters has been obtained by parallelizing the most time-consuming steps of the algorithms. Benchmark calculations for systems with up to 1300 basis functions and the presented applications show that the resulting algorithm for energies, gradients and second derivatives at the CCSD and CCSD(T) level of theory exhibits good scaling with the number of processors and substantially extends the range of applicability. Within the framework of the ’High accuracy Extrapolated Ab initio Thermochemistry’ (HEAT) protocols effects of increased basis-set size and higher excitations in the coupled- cluster expansion were investigated. The HEAT scheme was generalized for molecules containing second-row atoms in the case of vinyl chloride. This allowed the different experimental reported values to be discriminated. In the case of the benzene molecule it was shown that even for molecules of this size chemical accuracy can be achieved. Near-quantitative agreement with experiment (about 2 ppm deviation) for the prediction of fluorine-19 nuclear magnetic shielding constants can be achieved by employing the CCSD(T) model together with large basis sets at accurate equilibrium geometries if vibrational averaging and temperature corrections via second-order vibrational perturbation theory are considered. Applying a very similar level of theory for the calculation of the carbon-13 NMR chemical shifts of benzene resulted in quantitative agreement with experimental gas-phase data. The NMR chemical shift study for the bridgehead 1-adamantyl cation at the CCSD(T) level resolved earlier discrepancies of lower-level theoretical treatment. The equilibrium structure of diacetylene has been determined based on the combination of experimental rotational constants of thirteen isotopic species and zero-point vibrational corrections calculated at various quantum-chemical levels. These empirical equilibrium structures agree to within 0.1 pm irrespective of the theoretical level employed. High-level quantum-chemical calculations on the hyperfine structure parameters of the cyanopolyynes were found to be in excellent agreement with experiment. Finally, the theoretically most accurate determination of the molecular equilibrium structure of ferrocene to date is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A combined spectroscopic and ab initio theoretical study of the doubly hydrogen-bonded complex of 2-pyridone (2PY) with NH3 has been performed. The S-1 <- S-0 spectrum extends up to approximate to 1200 cm(-1) above the 0(0)(0) band, close to twice the range observed for 2PY. The S-1 state nonradiative decay for vibrations above approximate to 300 cm(-1) in the NH3 complex is dramatically slowed down relative to bare 2PY. Also, the Delta v=2,4,... overtone bands of the v(1)' and v(2)' out-of-plane vibrations that dominate the low-energy spectral region of 2PY are much weaker or missing for 2PY center dot NH3, which implies that the bridging (2PY)NH center dot center dot center dot NH3 and H2NH center dot center dot center dot O=C H-bonds clamp the 2PY at a planar geometry in the S-1 state. The mass-resolved UV vibronic spectra of jet-cooled 2PY center dot NH3 and its H/D mixed isotopomers are measured using two-color resonant two-photon ionization spectroscopy. The S-0 and S-1 equilibrium structures and normal-mode frequencies are calculated by density functional (B3LYP) and correlated ab initio methods (MP2 and approximate second-order coupled-cluster, CC2). The S-1 <- S-0 vibronic assignments are based on configuration interaction singles (CIS) and CC2 calculations. A doubly H-bonded bridged structure of C-S symmetry is predicted, in agreement with that of Held and Pratt [J. Am. Chem. Soc. 1993, 115, 9718]. While the B3LYP and MP2 calculated rotational constants are in very good agreement with experiment, the calculated H2NH center dot center dot center dot O=C H-bond distance is approximate to 0.7 angstrom shorter than that derived by Held and Pratt. On the other hand, this underlines their observation that ammonia can act as a strong H-bond donor when built into an H-bonded bridge. The CC2 calculations predict the H2NH center dot center dot center dot O distance to increase by 0.2 angstrom upon S-1 <- S-0 electronic excitation, while the (2PY)NH center dot center dot center dot NH3 H-bond remains nearly unchanged. Thus, the expansion of the doubly H-bonded bridge in the excited state is asymmetric and almost wholly due to the weakening of the interaction of ammonia with the keto acceptor group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the analysis of the SI So rotational band contours of jet-cooled 5-methyl-2-hydroxypyrimidine (5M2HP), the enol form of deoxythymine. Unlike thymine, which exhibits a structureless spectrum, the vibronic spectrum of 5M2HP is well structured, allowing us to determine the rotational constants and the methyl group torsional barriers in the S-0 and S-1 states. The 0(0)(0), 6a(0)(1), 6b(0)(1), and 14(0)(1) band contours were measured at 900 MHz (0.03 cm(-1)) resolution using mass-specific two-color resonant two-photon ionization (2C-R2PI) spectroscopy. All four bands are polarized perpendicular to the pyrimidine plane (>90% c type), identifying the S-1 <- S-0 excitation of 5M2HP as a 1n pi* transition. All contours exhibit two methyl rotor subbands that arise from the lowest 5-methyl torsional states 0A '' and 1E ''. The S-0 and S-1 state torsional barriers were extracted from fits to the torsional subbands. The 3-fold barriers are V-3 '' = 13 cm(-1) and V3' = SI cm(-1); the 6-fold barrier contributions V-6 '' and V-6' are in the range of 2-3 cm(-1) and are positive in both states. The changes of A, B, and C rotational constants upon S-1 <- S-0 excitation were extracted from the contours and reflect an "anti-quinoidal" distortion. The 0(0)(0) contour can only be simulated if a 3 GHz Lorentzian line shape is included, which implies that the S-1(1n pi*) lifetime is similar to 55 ps. For the 6a(0)(1) and 6b(0)(1) bands, the Lorentzian component increases to 5.5 GHz, reflecting a lifetime decrease to similar to 30 ps. The short lifetimes are consistent with the absence of fluorescence from the 1n pi* state. Combining these measurements with the previous observation of efficient intersystem crossing (ISC) from the Si state to a long-lived T-1((3)n pi*) state that lies similar to 2200 cm(-1) below [S. Lobsiger, S. et al. Phys. Chem. Chem. Phys. 2010, 12, 5032] implies that the broadening arises from fast intersystem crossing with k(ISC) approximate to 2 x 10(10) s(-1). In comparison to 5-methylpyrimidine, the ISC rate is enhanced by at least 10 000 by the additional hydroxy group in position 2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The S0 → S1 vibronic spectrum and S1 state nonradiative relaxation of jet-cooled keto-amino 5-fluorocytosine (5FCyt) are investigated by two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm–1 resolution. The 000 rotational band contour is polarized in-plane, implying that the electronic transition is 1ππ*. The electronic transition dipole moment orientation and the changes of rotational constants agree closely with the SCS-CC2 calculated values for the 1ππ* (S1) transition of 5FCyt. The spectral region from 0 to 300 cm–1 is dominated by overtone and combination bands of the out-of-plane ν1′ (boat), ν2′ (butterfly), and ν3′ (HN–C6H twist) vibrations, implying that the pyrimidinone frame is distorted out-of-plane by the 1ππ* excitation, in agreement with SCS-CC2 calculations. The number of vibronic bands rises strongly around +350 cm–1; this is attributed to the 1ππ* state barrier to planarity that corresponds to the central maximum of the double-minimum out-of-plane vibrational potentials along the ν1′, ν2′, and ν3′ coordinates, which gives rise to a high density of vibronic excitations. At +1200 cm–1, rapid nonradiative relaxation (knr ≥ 1012 s–1) sets in, which we interpret as the height of the 1ππ* state barrier in front of the lowest S1/S0 conical intersection. This barrier in 5FCyt is 3 times higher than that in cytosine. The lifetimes of the ν′ = 0, 2ν1′, 2ν2′, 2ν1′ + 2ν2′, 4ν2′, and 2ν1′ + 4ν2′ levels are determined from Lorentzian widths fitted to the rotational band contours and are τ ≥ 75 ps for ν′ = 0, decreasing to τ ≥ 55 ps at the 2ν1′ + 4ν2′ level at +234 cm–1. These gas-phase lifetimes are twice those of S1 state cytosine and 10–100 times those of the other canonical nucleobases in the gas phase. On the other hand, the 5FCyt gas-phase lifetime is close to the 73 ps lifetime in room-temperature solvents. This lack of dependence on temperature and on the surrounding medium implies that the 5FCyt nonradiative relaxation from its S1 (1ππ*) state is essentially controlled by the same ∼1200 cm–1 barrier and conical intersection both in the gas phase and in solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A full dimensional quasiclassical trajectory study of the OH+SO reaction is presented with the aim of investigating the role of the reactants rotational energy in the reactivity. Different energetic combinations with one and both reactants rotationally excited are studied. A passive method is used to correct zero-point-energy leakage in the classical calculations. The reactive cross sections, for each combination, are calculated and fitted to a capturelike model combined with a factor accounting for recrossing effects. Reactivity decreases as rotational energy is increased in any of both reactants. This fact provides a theoretical support for the experimental dependence of the rate constant on temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasar (QSO) absorption spectra provide an extremely useful probe of possible cosmological variation in various physical constants. Comparison of H i 21-cm absorption with corresponding molecular (rotational) absorption spectra allows us to constrain variation in , where α is the fine-structure constant and gp is the proton g-factor. We analyse spectra of two QSOs, PKS 1413+135 and TXS 0218+357, and derive values of at absorption redshifts of and 0.6847 by simultaneous fitting of the H i 21-cm and molecular lines. We find and respectively, indicating an insignificantly smaller y in the past. We compare our results with other constraints from the same two QSOs given recently by Drinkwater et al. and Carilli et al., and with our recent optical constraints, which indicated a smaller α at higher redshifts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indium monofluoride was excited in a high-frequency discharge and the C-X system was photographed at a reciprocal dispersion of 0.3 AA mm-1 using a plane-grating spectrograph. Rotational analyses of the 0,0 1,0 2,2 3,3 4,4 2,4 3,5 4,6 and 5,7 bands have been carried out and the following molecular constants have been evaluated. Be'=0.2670(+or-3) cm-1, Be"=0.2628(+or-4) cm-1, alpha e'=0.0050(+or-4) cm-1, alpha e"=0.0020(+or-1) cm-1, De'=3.65(+or-5)*10-7 cm-1, De"=2.5(+or-3)*10-7 cm-1, beta e'=0.5(+or-2)*10-7 cm-1, beta e"=0.2(+or-1)*10-7 cm-1, re'=1.9672(+or-3) AA, re"=1.9853(+or-2) AA. The re" value agrees with the microwave absorption value 1.9854 AA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Force constant and normal co-ordinate calculations are reported for the E species vibrations of the allene molecule. Data on the fundamental vibration frequencies of allene-h4, allene-d4 and allene-1.1-d2 and on the five experimentally determined Coriolis zeta constants of C3H4 and C3D4, were used in a force constant refinement procedure. Allowing for product and sum rules this gives 21 independent data which were used to refine to the most general harmonic force field (10 parameters) with one constraint (in the absence of any constraints the refinement was not satisfactory). The results have been used to calculate the complete ζz Coriolis interaction matrix for the allene-1.1-d2 molecule, and hence to calculate the expected rotational structure of the perpendicular bending vibrations of this molecule; the good agreement obtained with the observed spectra is a check on our results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pulsed jet Fourier transform microwave spectroscopy have been applied to several molecular complexes involving H2O, freons, methane, carboxylic acids, and rare gas. The obtained results showcase the suitability of this technique for studying the intermolecular interactions. The rotational spectra of three water adducts of halogenated organic molecules, i.e. chlorotrifluoroethylene, isoflurane and alfa,alfa,alfa,-trifluoroanisole, have been investigated. It has been found that, the halogenation of the partner molecules definitely changes the way in which water will link to the partner molecule. Quadrupole hyperfine structures and/or the tunneling splittings have been observed in the rotational spectra of difluoromethane-dichloromethane, chlorotrifluorometane-fluoromethane, difluoromethane-formaldehyde and trifluoromethane-benzene. These features have been useful to describe their intermolecular interactions (weak hydrogen bonds or halogen bonds), and to size the potential energy surfaces of their internal motions. The rotational spectrum of pyridine-methane pointed out that methane prefers to locate above the ring and link to pyridine through a C-H•••π weak hydrogen bond, rather than the C-H•••n interaction. This behavior, typical of complexes of pyridine with rare gases, suggests classifying CH4, in relation to its ability to form molecular complexes with aromatic molecules, as a pseudo rare gas. The conformational equilibria of three bi-molecules of carboxylic acids, acrylic acid-trifluoroacetic acid, difluoroacetic acid-formic acid and acrylic acid-fluoroacetic acid have been studied. The increase of the hydrogen bond length upon H→D isotopic substitution (Ubbelohde effect) has been deduced from the elongation of the carboxylic carbons C•••C distance. The van der Waals complex tetrahydrofuran-krypton shows that the systematic doubling of the rotational lines has been attributed to the residual pseudo-rotation of tetrahydrofuran in the complex, based on the values of the Coriolis coupling constants, and on the type (mu_b) of the interstate transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We combine the technique of femtosecond degenerate four-wave mixing (fs-DFWM) with a high repetition-rate pulsed supersonic jet source to obtain the rotational coherence spectrum (RCS) of cold cyclohexane (C(6)H(12)) with high signal/noise ratio. In the jet expansion, the near-parallel flow pattern combined with rapid translational cooling effectively eliminate dephasing collisions, giving near-constant RCS signal intensities over time delays up to 5 ns. The vibrational cooling in the jet eliminates the thermally populated vibrations that complicate the RCS coherences of cyclohexane at room temperature [Bragger, G.; et al. J. Phys. Chem. A 2011, 115, 9567]. The rotational cooling reduces the high-J rotational-state population, yielding the most accurate ground-state rotational constant to date, B(0) = 4305.859(9) MHz. Based on this B(0), a reanalysis of previous room-temperature gas-cell RCS measurements of cydohexane gives improved vibration rotation interaction constants for the v(32), v(6), v(16), and v(24) vibrational states. Combining the experimental B(0)(C(6)H(12)) with CCSD(T) calculations yields a very accurate semiexperimental equilibrium structure of the chair isomer of cyclohexane

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femtosecond time-resolved Raman rotational coherence spectroscopy (RCS) is employed to determine accurate rotational, vibration–rotation coupling constants, and centrifugal distortion constants of cyclopentane (C⁵H¹⁰). Its lowest-frequency vibration is a pseudorotating ring deformation that interconverts 10 permutationally distinct but energetically degenerate “twist” minima interspersed by 10 “bent” conformers. While the individual twist and bent structures are polar asymmetric tops, the pseudorotation is fast on the time scale of external rotation, rendering cyclopentane a fluxionally nonpolar symmetric top molecule. The pseudorotational level pattern corresponds to a one-dimensional internal rotor with a pseudorotation constant Bps ≈ 2.8 cm⁻¹. The pseudorotational levels are significantly populated up to l = ± 13 at 298 K; <10% of the molecules are in the l = 0 level. The next-higher vibration is the “radial” ν²³ ring deformation mode at 273 cm⁻¹, which is far above the pseudorotational fundamental. Femtosecond Raman RCS measurements were performed in a gas cell at T = 293 K and in a pulsed supersonic jet at T ≈ 90 K. The jet cooling reduces the pseudorotational distribution to l < ±8 and eliminates the population of ν²³, allowing one to determine the rotational constant as A0 = B0 = 6484.930(11) MHz. This value is ∼300 times more precise than the previous value. The fit of the RCS transients reveals that the rotation–pseudorotation coupling constant αe,psB = −0.00070(1) MHz is diminutive, implying that excitation of the pseudorotation has virtually no effect on the B0 rotational constant of cyclopentane. The smallness of αe,psB can be realized when comparing to the vibration–rotation coupling constant of the ν²³ vibration, αe,23B = −9.547(1) MHz, which is about 10⁴ times larger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rotational and ro-vibrational spectroscopy analysis of selected molecules of astrophysical importance, namely formaldehyde, mono-deuterated hydrogen sulfide, cyanoacetylene, deuterated cyanoacetylene, aminoacetonitrile, allylimine, and 2-aza-1,3-butadiene, has been presented in this thesis. For formaldehyde and mono-deuterated hydrogen sulfide, which are well-known interstellar molecules, a detailed Measured Active Rotational–Vibrational Energy Levels (MARVEL) analysis has been performed. For both of them, the MARVEL approach has been used to accurately derive the rotational and ro-vibrational energy levels from the experimental data available in the literature combined with new millimeter-wave measurements. Overall, the MARVEL analysis span a huge frequency range, from millimeter-wave to infrared (IR). For allylimine and 2-aza-1,3-butadiene, the pure rotational spectrum has been extended to the millimeter-wave region. The outcome of these two studies is the derivation of very accurate spectroscopic parameters that allow the accurate prediction of their rotational transitions over a large frequency range. For allylimine, this line catalog allowed the tentative detection of two isomers of allylimine (Ta and Ts) towards the G+0.693 molecular cloud. In addition to rotational spectroscopy, high-resolution IR spectra of interstellar molecules play also of pivotal role for the exploration of astromomical objects. For these reasons, high-resolution IR spectra of cyanoacetylene, deuterated cyanoacetylene, and aminoacetonitrile have been investigated. The precise spectroscopic constants of several vibrational excited states of these three molecules have been derived from the assignment of newly recorded IR spectra. Given the fact that all these three molecules are potentially present in Titan’s atmosphere, their ro-vibrational transitions can be considered unvaluable tools for their search, which might also be extended to other planetary atmospheres.