928 resultados para road traffic injury
Resumo:
In recent decades, highly motorised countries, such as Australia, have witnessed significant improvements in population health through reductions in fatalities and injuries from road traffic crashes. In Australia, concerted efforts have been made to reduce the road trauma burden since road fatalities reached their highest level in in the early 1970s. Since that time, many improvements have been made drawing on various disciplines to reduce the trauma burden (e.g., road and vehicle design, road user education, traffic law enforcement practices and enforcement technologies). While road fatalities have declined significantly since the mid-1970s, road trauma remains a serious public health concern in Australia. China has recently become the largest car market in the world (Ma, Li, Zhou, Duan, & Bishai, 2012). This rapid motorisation has been accompanied by substantial expansion of the road network as well as a large road trauma burden. Road traffic injuries are a major cause of death in China, reported as accounting for one third of all injury-deaths between 2002 and 2006 (Ma et al., 2012). In common with Australia, China has experienced a reported decline in fatalities since 2002 (see Hu, Wen & Baker, 2008). However, there remains a strong need for action in this area as rates of motorisation continue to climb in China. In Australia, a wide range of organisations have contributed to the improvements in road safety including government agencies, professional organisations, advocacy groups and research centres. In particular, Australia has several highly regarded and multi-disciplinary, university-based research centres that work across a range of road safety fields, including engineering, intelligent transportation systems, the psychology of road user behaviour, and traffic law enforcement. Besides conducting high-quality research, these centres fulfil an important advocacy role in promoting safer road use and facilitating collaborations with government and other agencies, at both the national and international level. To illustrate the role of these centres, an overview will be provided of the Centre for Accident Research and Road Safety-Queensland (CARRS-Q), which was established in 1996 and has gone on to become a recognised world-leader in road safety and injury prevention research. The Centre’s research findings are used to provide evidence-based recommendations to government and have directly contributed to promoting safer road use in Australia. Since 2006, CARRS-Q has also developed strong collaborative links with various universities and organisations in China to assist in building understanding, connections and capacity to assist in reducing the road trauma burden. References Hu, G., Wen, M., Baker, T. D., & Baker, S. P. (2008). Road-traffic deaths in China, 1985–2005: threat and opportunity. Injury Prevention, 14, 149-153. Ma, S., Li, Q., Zhou, M., Duan, L., & Bishai, D. (2012). Road Traffic Injury in China: A Review of National Data Sources. Traffic Injury Prevention, 13(S1), 57-63.
Resumo:
Background Road safety targets are widely used and provide a basis for evaluating progress in road safety outcomes against a quantified goal. In Australia, a reduction in fatalities from road traffic crashes (RTCs) is a public policy objective: a national target of no more than 5.6 fatalities per 100,000 population by 2010 was set in 2001. The purpose of this paper is to examine the progress Australia and its states and territories have made in reducing RTC fatalities, and to estimate when the 2010 target may be reached by the jurisdictions. Methods Following a descriptive analysis, univariate time-series models estimate past trends in fatality rates over recent decades. Data for differing time periods are analysed and different trend specifications estimated. Preferred models were selected on the basis of statistical criteria and the period covered by the data. The results of preferred regressions are used to determine out-of-sample forecasts of when the national target may be attained by the jurisdictions. Though there are limitations with the time series approach used, inadequate data precluded the estimation of a full causal/structural model. Results Statistically significant reductions in fatality rates since 1971 were found for all jurisdictions with the national rate decreasing on average, 3% per year since 1992. However the gains have varied across time and space, with percent changes in fatality rates ranging from an 8% increase in New South Wales 1972-1981 to a 46% decrease in Queensland 1982-1991. Based on an estimate of past trends, it is possible that the target set for 2010 may not be reached nationally, until 2016. Unsurprisingly, the analysis indicated a range of outcomes for the respective state/territory jurisdictions though these results should be interpreted with caution due to different assumptions and length of data. Conclusions Results indicate that while Australia has been successful over recent decades in reducing RTC mortality, an important gap between aspirations and achievements remains. Moreover, unless there are fairly radical ("trend-breaking") changes in the factors that affect the incidence of RTC fatalities, deaths from RTCs are likely to remain above the national target in some areas of Australia, for years to come.
Resumo:
This article examines the trends of road traffic crash (RTC) fatality rates in OECD countries over the past four decades. Based on recent developments in the economic growth literature we propose and test the hypothesis that RTC fatality rates initially increase with economic development, peak, and then gradually decrease. The theory predicts that, as a result, the RTC fatality rates of different countries will tend to converge over time. Our results for the period 1961–2007 reveal no evidence of the convergence of RTC fatality rates across the OECD as a whole for that time period. Nevertheless, there is evidence of convergence among sub-groups of countries. This evidence may assist policymakers as an additional way of benchmarking their country's performance against that of its peers and to identify the next-closest peer in country sub-groups with superior road safety performance.
Resumo:
Constrained topography and complex road geometry along rural mountainous roads often represent a demanding driving situation. As a result, traffic crashes along mountainous roads are likely to have different characteristics to crashes on roads in flatter areas; however, there is little research on this topic. The objective of this study is to examine the characteristics of road traffic crashes on rural mountainous roads and to compare these with the characteristics of crashes on non-mountainous roads. This paper explores and compares general crash characteristics including crash type, crash severity, roadway geometric features and environmental factors, and road user/vehicle characteristics. Five years of road traffic crash data (2008-2012) for Sabah were obtained from the Malaysian Institute of Road Safety Research. During this period, a total of 25,439 crashes occurred along federal roads in Sabah, of which 4,875 crashes occurred in mountainous areas. Categorical data analysis techniques were used to examine the differences between mountainous and non-mountainous crashes. Results show that the odds ratio of ‘out-of-control’ crashes and the crash involvement due to speeding are respectively about 4.2 times and 2.8 times higher on mountainous than non-mountainous roads. Other factors and crash characteristics that increase the odds of crashes along mountainous roads compared with non-mountainous roads include horizontal curved sections compared with straight sections, single-vehicle crashes compared with multi-vehicle crashes and weekend crashes compared with weekday crashes. This paper identifies some of the basic characteristics of crashes along rural mountainous roads to aid future research on traffic safety along mountainous roads.
Resumo:
Constrained topography and complex road geometry along rural mountainous roads often represent a demanding driving situation. As a result, traffic crashes along mountainous roads are likely to have different characteristics to crashes on roads in flatter areas; however, there is little research on this topic. The objective of this study is to examine the characteristics of road traffic crashes on rural mountainous roads and to compare these with the characteristics of crashes on non-mountainous roads. This paper explores and compares general crash characteristics including crash type, crash severity, roadway geometric features and environmental factors, and road user/vehicle characteristics. Five years of road traffic crash data (2008-2012) for Sabah were obtained from the Malaysian Institute of Road Safety Research. During this period, a total of 25,439 crashes occurred along federal roads in Sabah, of which 4,875 crashes occurred in mountainous areas. Categorical data analysis techniques were used to examine the differences between mountainous and non-mountainous crashes. Results show that the odds ratio of ‘out-of-control’ crashes and the crash involvement due to speeding are respectively about 4.2 times and 2.8 times higher on mountainous than non-mountainous roads. Other factors and crash characteristics that increase the odds of crashes along mountainous roads compared with non-mountainous roads include horizontal curved sections compared with straight sections, single-vehicle crashes compared with multi-vehicle crashes and weekend crashes compared with weekday crashes. This paper identifies some of the basic characteristics of crashes along rural mountainous roads to aid future research on traffic safety along mountainous roads.
Resumo:
The Australian road traffic fatality rate is slowing down at a much lower rate than that of comparable high income countries. This slow rate of reduction may be attributable to a wide range of causes such as deficits in coordination and low community engagement. However, it may also be due to the absence of understanding of systems thinking in road safety in Australia. This exploratory study aimed to investigate the perceptions of Australian stakeholders about the prevalence of a principle of the Dynamic Systems Theory, namely: self-organising. The results pointed to a need to decentralize the road traffic injury prevention efforts in Australia through a range of self-organising principles and the adoption of emergent rather than deliberate strategies.
Resumo:
In this paper, we introduce a macroscopic model for road traffic accidents along highway sections. We discuss the motivation and the derivation of such a model, and we present its mathematical properties. The results are presented by means of examples where a section of a crowded one-way highway contains in the middle a cluster of drivers whose dynamics are prone to road traffic accidents. We discuss the coupling conditions and present some existence results of weak solutions to the associated Riemann Problems. Furthermore, we illustrate some features of the proposed model through some numerical simulations. © The authors 2012.
Resumo:
This paper reports laboratory experiments designed to study the impact of public information about past departure rates on congestion levels and travel costs. Our design is based on a discrete version of Arnott et al.'s (1990) bottleneck model. In all treatments, congestion occurs and the observed travel costs are quite similar to the predicted ones. Subjects' capacity to coordinate is not affected by the availability of public information on past departure rates, by the number of drivers or by the relative cost of delay. This seemingly absence of treatment effects is confirmed by our finding that a parameter-free reinforcement learning model best characterises individual behaviour.
Resumo:
Apesar das recentes inovações tecnológicas, o setor dos transportes continua a exercer impactes significativos sobre a economia e o ambiente. Com efeito, o sucesso na redução das emissões neste setor tem sido inferior ao desejável. Isto deve-se a diferentes fatores como a dispersão urbana e a existência de diversos obstáculos à penetração no mercado de tecnologias mais limpas. Consequentemente, a estratégia “Europa 2020” evidencia a necessidade de melhorar a eficiência no uso das atuais infraestruturas rodoviárias. Neste contexto, surge como principal objetivo deste trabalho, a melhoria da compreensão de como uma escolha de rota adequada pode contribuir para a redução de emissões sob diferentes circunstâncias espaciais e temporais. Simultaneamente, pretende-se avaliar diferentes estratégias de gestão de tráfego, nomeadamente o seu potencial ao nível do desempenho e da eficiência energética e ambiental. A integração de métodos empíricos e analíticos para avaliação do impacto de diferentes estratégias de otimização de tráfego nas emissões de CO2 e de poluentes locais constitui uma das principais contribuições deste trabalho. Esta tese divide-se em duas componentes principais. A primeira, predominantemente empírica, baseou-se na utilização de veículos equipados com um dispositivo GPS data logger para recolha de dados de dinâmica de circulação necessários ao cálculo de emissões. Foram percorridos aproximadamente 13200 km em várias rotas com escalas e características distintas: área urbana (Aveiro), área metropolitana (Hampton Roads, VA) e um corredor interurbano (Porto-Aveiro). A segunda parte, predominantemente analítica, baseou-se na aplicação de uma plataforma integrada de simulação de tráfego e emissões. Com base nesta plataforma, foram desenvolvidas funções de desempenho associadas a vários segmentos das redes estudadas, que por sua vez foram aplicadas em modelos de alocação de tráfego. Os resultados de ambas as perspetivas demonstraram que o consumo de combustível e emissões podem ser significativamente minimizados através de escolhas apropriadas de rota e sistemas avançados de gestão de tráfego. Empiricamente demonstrou-se que a seleção de uma rota adequada pode contribuir para uma redução significativa de emissões. Foram identificadas reduções potenciais de emissões de CO2 até 25% e de poluentes locais até 60%. Através da aplicação de modelos de tráfego demonstrou-se que é possível reduzir significativamente os custos ambientais relacionados com o tráfego (até 30%), através da alteração da distribuição dos fluxos ao longo de um corredor com quatro rotas alternativas. Contudo, apesar dos resultados positivos relativamente ao potencial para a redução de emissões com base em seleções de rotas adequadas, foram identificadas algumas situações de compromisso e/ou condicionantes que devem ser consideradas em futuros sistemas de eco navegação. Entre essas condicionantes importa salientar que: i) a minimização de diferentes poluentes pode implicar diferentes estratégias de navegação, ii) a minimização da emissão de poluentes, frequentemente envolve a escolha de rotas urbanas (em áreas densamente povoadas), iii) para níveis mais elevados de penetração de dispositivos de eco-navegação, os impactos ambientais em todo o sistema podem ser maiores do que se os condutores fossem orientados por dispositivos tradicionais focados na minimização do tempo de viagem. Com este trabalho demonstrou-se que as estratégias de gestão de tráfego com o intuito da minimização das emissões de CO2 são compatíveis com a minimização do tempo de viagem. Por outro lado, a minimização de poluentes locais pode levar a um aumento considerável do tempo de viagem. No entanto, dada a tendência de redução nos fatores de emissão dos poluentes locais, é expectável que estes objetivos contraditórios tendam a ser minimizados a médio prazo. Afigura-se um elevado potencial de aplicação da metodologia desenvolvida, seja através da utilização de dispositivos móveis, sistemas de comunicação entre infraestruturas e veículos e outros sistemas avançados de gestão de tráfego.
Resumo:
The selection of the energy source to power the transport sector is one of the main current concerns, not only relative with the energy paradigm but also due to the strong influence of road traffic in urban areas, which highly affects human exposure to air pollutants and human health and quality of life. Due to current important technical limitations of advanced energy sources for transportation purposes, biofuels are seen as an alternative way to power the world’s motor vehicles in a near-future, helping to reduce GHG emissions while at the same time stimulating rural development. Motivated by European strategies, Portugal, has been betting on biofuels to meet the Directive 2009/28/CE goals for road transports using biofuels, especially biodiesel, even though, there is unawareness regarding its impacts on air quality. In this sense, this work intends to clarify this issue by trying to answer the following question: can biodiesel use contribute to a better air quality over Portugal, particularly over urban areas? The first step of this work consisted on the characterization of the national biodiesel supply chain, which allows verifying that the biodiesel chain has problems of sustainability as it depends on raw materials importation, therefore not contributing to reduce the external energy dependence. Next, atmospheric pollutant emissions and air quality impacts associated to the biodiesel use on road transports were assessed, over Portugal and in particular over the Porto urban area, making use of the WRF-EURAD mesoscale numerical modelling system. For that, two emission scenarios were defined: a reference situation without biodiesel use and a scenario reflecting the use of a B20 fuel. Through the comparison of both scenarios, it was verified that the use of B20 fuels helps in controlling air pollution, promoting reductions on PM10, PM2.5, CO and total NMVOC concentrations. It was also verified that NO2 concentrations decrease over the mainland Portugal, but increase in the Porto urban area, as well as formaldehyde, acetaldehyde and acrolein emissions in the both case studies. However, the use of pure diesel is more injurious for human health due to its dominant VOC which have higher chronic hazard quotients and hazard indices when compared to B20.
Resumo:
There were 338 road fatalities on Irish roads in 2007. Research in 2007 by the Road Safety Authority in Ireland states that young male drivers (17 – 25 years) are seven times more likely to be killed on Irish roads than other road users. The car driver fatality rate was found to be approximately 10 times higher for young male drivers than for female drivers in 2000. Young male drivers in particular demonstrate a high proclivity for risky driving behaviours. These risky behaviours include drink driving, speeding, rug-driving and engaging in aggressive driving. Speed is the single largest contributing factor to road deaths in Ireland. Approximately 40% of fatal accidents are caused by excessive or inappropriate speed. This study focuses on how dangerous driving behaviours may be addressed through social marketing. This study analyses the appropriate level of fear that needs to be induced in order to change young male driving behaviour.
Resumo:
This issue of the FAL Bulletin examines the implications of road safety for the health-care system. It focuses on the economic cost of treating and rehabilitating road traffic injury victims and, for the sake of better public policy, proposes policy changes aimed at improving data collection as well as coordination among government agencies.
Resumo:
Road traffic accidents (RTA) are an important cause of premature death. We examined socio-demographic and geographical determinants of RTA mortality in Switzerland by linking 2000 census data to RTA mortality records 2000-2005 (ICD-10 codes V00-V99). Data from 5.5 million residents aged 18-94 years, 1744 study areas, and 1620 RTA deaths were analyzed, including 978 deaths (60.4%) in motor vehicle occupants, 254 (15.7%) in motorcyclists, 107 (6.6%) in cyclists, and 259 (16.0%) in pedestrians. Weibull survival models and Bayesian methods were used to calculate hazard ratios (HR), and standardized mortality ratios (SMR) across study areas. Adjusted HR comparing women with men ranged from 0.04 (95% CI 0.02-0.07) in motorcyclists to 0.43 (95% CI 0.32-0.56) in pedestrians. There was a u-shaped relationship with age in motor vehicle occupants and motorcyclists. In cyclists and pedestrians, mortality increased after age 55 years. Mortality was higher in individuals with primary education (HR 1.53; 95% CI 1.29-1.81), and higher in single (HR 1.24; 95% CI 1.05-1.46), widowed (HR 1.31; 95% CI 1.05-1.65) and divorced individuals (HR 1.62; 95% CI 1.33-1.97), compared to persons with tertiary education or married persons. The association with education was particularly strong for pedestrians (HR 1.87; 95% CI 1.20-2.91). RTA mortality increased with decreasing population density of study areas for motor vehicle occupants (test for trend p<0.0001) and motorcyclists (p=0.0021) but not for cyclists (p=0.39) or pedestrians (p=0.29). SMR standardized for socio-demographic and geographical variables ranged from 82 to 190. Prevention efforts should aim to reduce inequities across socio-demographic and educational groups, and across geographical areas, with interventions targeted at high-risk groups and areas, and different traffic users, including pedestrians.