944 resultados para respiratory rate
Resumo:
OBJECTIVE: To describe clinical respiratory parameters in cats and dogs with respiratory distress and identify associations between respiratory signs at presentation and localization of the disease with particular evaluation between the synchrony of abdominal and chest wall movements as a clinical indicators for pleural space disease. Design - Prospective observational clinical study. SETTING: Emergency service in a university veterinary teaching hospital. ANIMALS: Cats and dogs with respiratory distress presented to the emergency service between April 2008 and July 2009. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The following parameters were systematically determined at time of admission: respiratory rate, heart rate, temperature, type of breathing, movement of the thoracic and abdominal wall during inspiration, presence of stridor, presence and type of dyspnea, and results of thoracic auscultation. Abdominal and chest wall movement was categorized as synchronous, asynchronous, or inverse. Diagnostic test results, diagnosis, and outcome were subsequently recorded. Based on the final diagnoses, animals were assigned to 1 or more of the following groups regarding the anatomical localization of the respiratory distress: upper airways, lower airways, lung parenchyma, pleural space, thoracic wall, nonrespiratory causes, and normal animals. One hundred and seventy-six animals (103 cats and 73 dogs) were evaluated. Inspiratory dyspnea was associated with upper airway disease in dogs and expiratory dyspnea with lower airway disease in cats. Respiratory noises were significantly associated and highly sensitive and specific for upper airway disease. An asynchronous or inverse breathing pattern and decreased lung auscultation results were significantly associated with pleural space disease in both dogs and cats (P<0.001). The combination is highly sensitive (99%) but not very specific (45%). Fast and shallow breathing was not associated with pleural space disease. Increased or moist pulmonary auscultation findings were associated with parenchymal lung disease. CONCLUSIONS: Cats and dogs with pleural space disease can be identified by an asynchronous or inverse breathing pattern in combination with decreased lung sounds on auscultation.
Resumo:
Heart rate variability (HRV) and cardiorespiratory coordination, i.e. the temporal interplay between oscillations of heartbeat and respiration, reflect information related to the cardiovascular and autonomic nervous system. The purpose of this study was to investigate the relationship between spectral measures of HRV and measures of cardiorespiratory coordination. In 127 subjects from a normal population a 24 h Holter ECG was recorded. Average heart rate (HR) and the following HRV parameters were calculated: very low (VLF), low (LF) and high frequency (HF) oscillations and LF/HF. Cardiorespiratory coordination was quantified using average respiratory rate (RespR), the ratio of heart rate and respiratory rate (HRR), the phase coordination ratio (PCR) and the extent of cardiorespiratory coordination (PP). Pearson's correlation coefficient r was used to quantify the relationship between each pair of the variables across all subjects. HR and HRR correlated strongest during daytime (r = 0.89). LF/HF and PP showed a negative correlation to a reasonable degree (r = -0.69). During nighttime sleep these correlations decreased whereas the correlation between HRR and RespR (r = -0.47) as well as between HRR and PCR (r = 0.73) increased substantially. In conclusion, HRR and PCR deliver considerably different information compared to HRV measures whereas PP is partially linked reciprocally to LF/HF.
Resumo:
The relationship between obesity and heart rate variability (HRV) has been studied in adults and adolescents, but is not determined in young pediatrics. The purpose of this study was to assess autonomic activity using HRV in a pediatric population. We hypothesized that obese children would have reduced parasympathetic and increased sympathetic activity compared to age-matched subjects. 42 pediatric subjects (ages 3-5) were classified into 3 groups based on body mass index-for-age; normal, overweight and obese. HRV and respiratory rate were recorded during 3 minute baseline, 2 minute isometric handgrip and 3 minute recovery. HRV was analyzed in the time domain [heart rate (HR), RR interval (RRI) and RRI standard deviation (RRISD)] and frequency domain [low frequency (LF), high frequency (HF) and LF/HF ratio] using repeated measures ANOVA. Spearman’s correlations were used to examine the relations between BMI and HRV at rest. Significant condition effects were found between baseline, exercise and recovery, but these responses were not significantly different between the normal, overweight and obese children. BMI was negatively correlated with LF/HF, while BMI was positively correlated with RRISD, LF, HF and nHF. Our data demonstrate that higher BMI in the pediatric population is correlated with higher parasympathetic and lower sympathetic activity. These findings are contrary to HRV responses observed in adults and adolescents, suggesting complex relationships between age, obesity and autonomic control of the heart. The data supports the concept of an age reliance of HRV and a novel relationship between adiposity and body mass index in 3-5 year olds.
Resumo:
Compared with term-born infants, preterm infants have increased respiratory morbidity in the first year of life. We investigated whether lung function tests performed near term predict subsequent respiratory morbidity during the first year of life and compared this to standard clinical parameters in preterms.The prospective birth cohort included randomly selected preterm infants with and without bronchopulmonary dysplasia. Lung function (tidal breathing and multiple-breath washout) was measured at 44 weeks post-menstrual age during natural sleep. We assessed respiratory morbidity (wheeze, hospitalisation, inhalation and home oxygen therapy) after 1 year using a standardised questionnaire. We first assessed the association between lung function and subsequent respiratory morbidity. Secondly, we compared the predictive power of standard clinical predictors with and without lung function data.In 166 preterm infants, tidal volume, time to peak tidal expiratory flow/expiratory time ratio and respiratory rate were significantly associated with subsequent wheeze. In comparison with standard clinical predictors, lung function did not improve the prediction of later respiratory morbidity in an individual child.Although associated with later wheeze, noninvasive infant lung function shows large physiological variability and does not add to clinically relevant risk prediction for subsequent respiratory morbidity in an individual preterm.
Resumo:
The objective of the present study was to assess the validity of barometric whole-body plethysmography (BWBP), to establish reference values, and to standardise a bronchoprovocative test to investigate airway responsiveness using BWBP in healthy dogs. BWBP measurements were obtained from six healthy beagle dogs using different protocols: (1) during three consecutive periods (3.5min each) in two morning and two evening sessions; (2) before and after administration of two protocols of sedation; (3) before and after nebulisation of saline and increasing concentrations of carbachol and histamine both in conscious dogs and in dogs under both protocols of sedation. Enhanced pause (PENH) was used as index of bronchoconstriction. Basal BWBP measurements were also obtained in 22 healthy dogs of different breeds, age and weight. No significant influence of either time spent in the chamber or daytime was found for most respiratory variables but a significant dog effect was detected for most variables. A significant body weight effect was found on tidal volume and peak flow values (P<0.05). Response to carbachol was not reproducible and always associated with side effects. Nebulisation of histamine induced a significant increase in respiratory rate, peak expiratory flow, peak expiratory flow/peak inspiratory flow ratio and PENH (P<0.05). The response was reproduced in each dog at different concentrations of histamine. Sedation with acepromazine+buprenorphine had little influence on basal measurements and did not change the results of histamine challenge. It was concluded that BWBP is a safe, non invasive and reliable technique of investigation of lung function in dogs which provides new opportunities to characterise respiratory status, to evaluate airway hyperresponsiveness and to assess therapeutic interventions.
Resumo:
OBJECTIVE Cyclic recruitment and derecruitment of atelectasis can occur during mechanical ventilation, especially in injured lungs. Experimentally, cyclic recruitment and derecruitment can be quantified by respiration-dependent changes in PaO2 (ΔPaO2), reflecting the varying intrapulmonary shunt fraction within the respiratory cycle. This study investigated the effect of inspiration to expiration ratio upon ΔPaO2 and Horowitz index. DESIGN Prospective randomized study. SETTING Laboratory investigation. SUBJECTS Piglets, average weight 30 ± 2 kg. INTERVENTIONS At respiratory rate 6 breaths/min, end-inspiratory pressure (Pendinsp) 40 cm H2O, positive end-expiratory pressure 5 cm H2O, and FIO2 1.0, measurements were performed at randomly set inspiration to expiration ratios during baseline healthy and mild surfactant depletion injury. Lung damage was titrated by repetitive surfactant washout to induce maximal cyclic recruitment and derecruitment as measured by multifrequency phase fluorimetry. Regional ventilation distribution was evaluated by electrical impedance tomography. Step changes in airway pressure from 5 to 40 cm H2O and vice versa were performed after lavage to calculate PO2-based recruitment and derecruitment time constants (TAU). MEASUREMENTS AND MAIN RESULTS In baseline healthy, cyclic recruitment and derecruitment could not be provoked, whereas in model acute respiratory distress syndrome, the highest ΔPaO2 were routinely detected at an inspiration to expiration ratio of 1:4 (range, 52-277 torr [6.9-36.9 kPa]). Shorter expiration time reduced cyclic recruitment and derecruitment significantly (158 ± 85 torr [21.1 ± 11.3 kPa] [inspiration to expiration ratio, 1:4]; 25 ± 12 torr [3.3 ± 1.6 kPa] [inspiration to expiration ratio, 4:1]; p < 0.0001), whereas the PaO2/FIO2 ratio increased (267 ± 50 [inspiration to expiration ratio, 1:4]; 424 ± 53 [inspiration to expiration ratio, 4:1]; p < 0.0001). Correspondingly, regional ventilation redistributed toward dependent lung regions (p < 0.0001). Recruitment was much faster (TAU: fast 1.6 s [78%]; slow 9.2 s) than derecruitment (TAU: fast 3.1 s [87%]; slow 17.7 s) (p = 0.0078). CONCLUSIONS Inverse ratio ventilation minimizes cyclic recruitment and derecruitment of atelectasis in an experimental model of surfactant-depleted pigs. Time constants for recruitment and derecruitment, and regional ventilation distribution, reflect these findings and highlight the time dependency of cyclic recruitment and derecruitment.
Resumo:
The potential for significant human populations to experience long-term inhalation of formaldehyde and reports of symptomatology due to this exposure has led to a considerable interest in the toxicologic assessment of risk from subchronic formaldehyde exposures using animal models. Since formaldehyde inhalation depresses certain respiratory parameters in addition to its other forms of toxicity, there is a potential for the alteration of the actual dose received by the exposed individual (and the resulting toxicity) due to this respiratory effect. The respiratory responses to formaldehyde inhalation and the subsequent pattern of deposition were therefore investigated in animals that had received subchronic exposure to the compound, and the potential for changes in the formaldehyde dose received due to long-term inhalation evaluated. Male Sprague-Dawley rats were exposed to either 0, 0.5, 3, or 15 ppm formaldehyde for 6 hours/day, 5 days/week for up to 6 months. The patterns of respiratory response, deposition and the compensation mechanisms involved were then determined in a series of formaldehyde test challenges to both the upper and to the lower respiratory tracts in separate groups of subchronically exposed animals and age-specific controls (four concentration groups, two time points). In both the control and pre-exposed animals, there was a characteristic recovery of respiratory parameters initially depressed by formaldehyde inhalation to at or approaching pre-exposure levels within 10 minutes of the initiation of exposure. Also, formaldehyde deposition was found to remain very high in the upper and lower tracts after long-term exposure. Therefore, there was probably little subsequent effect on the dose received by the exposed individual that was attributable to the repeated exposures. There was a diminished initial minute volume response in test challenges of both the upper and lower tracts of animals that had received at least 16 weeks of exposure to 15 ppm, with compensatory increases in tidal volume in the upper tract and respiratory rate in the lower tract. However, this dose-related effect was probably not relevant to human risk estimation because this formaldehyde dose is in excess of that experienced by human populations. ^
Resumo:
Changes in the respiratory rate and the contribution of the cytochrome (Cyt) c oxidase and alternative oxidase (COX and AOX, respectively) were investigated in soybean (Glycine max L. cv Stevens) root seedlings using the 18O-discrimination method. In 4-d-old roots respiration proceeded almost entirely via COX, but by d 17 more than 50% of the flux occurred via AOX. During this period the capacity of COX, the theoretical yield of ATP synthesis, and the root relative growth rate all decreased substantially. In extracts from whole roots of different ages, the ubiquinone pool was maintained at 50% to 60% reduction, whereas pyruvate content fluctuated without a consistent trend. In whole-root immunoblots, AOX protein was largely in the reduced, active form at 7 and 17 d but was partially oxidized at 4 d. In isolated mitochondria, Cyt pathway and succinate dehydrogenase capacities and COX I protein abundance decreased with root age, whereas both AOX capacity and protein abundance remained unchanged. The amount of mitochondrial protein on a dry-mass basis did not vary significantly with root age. It is concluded that decreases in whole-root respiration during growth of soybean seedlings can be largely explained by decreases in maximal rates of electron transport via COX. Flux via AOX is increased so that the ubiquinone pool is maintained in a moderately reduced state.
Resumo:
Background. The value of respiratory variables as weaning predictors in the intensive care unit (ICU) is controversial. We evaluated the ability of tidal volume (Vtexp), respiratory rate ( f ), minute volume (MVexp), rapid shallow breathing index ( f/Vt), inspired–expired oxygen concentration difference [(I–E)O2], and end-tidal carbon dioxide concentration (PE′CO2) at the end of a weaning trial to predict early weaning outcomes. Methods. Seventy-three patients who required .24 h of mechanical ventilation were studied. A controlled pressure support weaning trial was undertaken until 5 cm H2O continuous positive airway pressure or predefined criteria were reached. The ability of data from the last 5 min of the trial to predict whether a predefined endpoint indicating discontinuation of ventilator support within the next 24 h was evaluated. Results. Pre-test probability for achieving the outcome was 44% in the cohort (n¼32). Non-achievers were older, had higher APACHE II and organ failure scores before the trial, and higher baseline arterial H+ concentrations. The Vt, MV, f, and f/Vt had no predictive power using a range of cut-off values or from receiver operating characteristic (ROC) analysis. The [I–E]O2 and PE′CO2 had weak discriminatory power [areaunder the ROC curve: [I–E]O2 0.64 (P¼0.03); PE′CO2 0.63 (P¼0.05)]. Using best cut-off values for [I–E]O2 of 5.6% and PE′CO2 of 5.1 kPa, positive and negative likelihood ratios were 2 and 0.5, respectively, which only changed the pre- to post-test probability by about 20%. Conclusions. In unselected ICU patients, respiratory variables predict early weaning from mechanical ventilation poorly.
Resumo:
The respiratory metabolism of immature forms (eggs, larvae, prepupae and pupae) of Camponotus rufipes (Hymenoptera: Formicidae) was studied at 25 degrees C, using a Warburg respirometer. Mean respiratory rates (mu l O gamma mg(-1) live weight.hr(-1)) for eggs, first instars, second instars, third instars, fourth instars, prepupae, and pupae were respectively: 2.53, 5.07, 1.23, 0.32, 0.22, 0.19 and 0.13. Adult workers with body mass between 20 and 30 mg had a mean respiratory rate of 0.43. The high respiratory rate in first instars probably reflects, besides the size influence, the metabolic costs of differentiation that occurs in this phase. (C) 1998 Published by Elsevier B.V.
Resumo:
Introduction and objectives Early recognition of deteriorating patients results in better patient outcomes. Modified early warning scores (MEWS) attempt to identify deteriorating patients early so timely interventions can occur thus reducing serious adverse events. We compared frequencies of vital sign recording 24 h post-ICU discharge and 24 h preceding unplanned ICU admission before and after a new observation chart using MEWS and an associated educational programme was implemented into an Australian Tertiary referral hospital in Brisbane. Design Prospective before-and-after intervention study, using a convenience sample of ICU patients who have been discharged to the hospital wards, and in patients with an unplanned ICU admission, during November 2009 (before implementation; n = 69) and February 2010 (after implementation; n = 70). Main outcome measures Any change in a full set or individual vital sign frequency before-and-after the new MEWS observation chart and associated education programme was implemented. A full set of vital signs included Blood pressure (BP), heart rate (HR), temperature (T°), oxygen saturation (SaO2) respiratory rate (RR) and urine output (UO). Results After the MEWS observation chart implementation, we identified a statistically significant increase (210%) in overall frequency of full vital sign set documentation during the first 24 h post-ICU discharge (95% CI 148, 288%, p value <0.001). Frequency of all individual vital sign recordings increased after the MEWS observation chart was implemented. In particular, T° recordings increased by 26% (95% CI 8, 46%, p value = 0.003). An increased frequency of full vital sign set recordings for unplanned ICU admissions were found (44%, 95% CI 2, 102%, p value = 0.035). The only statistically significant improvement in individual vital sign recordings was urine output, demonstrating a 27% increase (95% CI 3, 57%, p value = 0.029). Conclusions The implementation of a new MEWS observation chart plus a supporting educational programme was associated with statistically significant increases in frequency of combined and individual vital sign set recordings during the first 24 h post-ICU discharge. There were no significant changes to frequency of individual vital sign recordings in unplanned admissions to ICU after the MEWS observation chart was implemented, except for urine output. Overall increases in the frequency of full vital sign sets were seen.
Resumo:
Frequent exposure to ultrafine particles (UFP) is associated with detrimental effects on cardiopulmonary function and health. UFP dose and therefore the associated health risk are a factor of exposure frequency, duration, and magnitude of (therefore also proximity to) a UFP emission source. Bicycle commuters using on-road routes during peak traffic times are sharing a microenvironment with high levels of motorised traffic, a major UFP emission source. Inhaled particle counts were measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing. Total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003). For bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners.
Resumo:
BACKGROUND: Head-of-bed elevation (HOBE) has been shown to assist in reducing respiratory complications associated with mechanical ventilation; however, there is minimal research describing changes in end-expiratory lung volume. This study aims to investigate changes in end-expiratory lung volume in a supine position and 2 levels of HOBE. METHODS: Twenty postoperative cardiac surgery subjects were examined using electrical impedance tomography. End-expiratory lung impedance (EELI) was recorded as a surrogate measurement of end-expiratory lung volume in a supine position and at 20° and then 30°. RESULTS: Significant increases in end-expiratory lung volume were seen at both 20° and 30° HOBE in all lung regions, except the anterior, with the largest changes from baseline (supine) seen at 30°. From baseline to 30° HOBE, global EELI increased by 1,327 impedance units (95% CI 1,080–1,573, P < .001). EELI increased by 1,007 units (95% CI 880–1,134, P < .001) in the left lung region and by 320 impedance units (95% CI 188–451, P < .001) in the right lung. Posterior increases of 1,544 impedance units (95% CI 1,405–1,682, P < .001) were also seen. EELI decreased anteriorly, with the largest decreases occurring at 30° (−335 impedance units, 95% CI −486 to −183, P < .001). CONCLUSIONS: HOBE significantly increases global and regional end-expiratory lung volume; therefore, unless contraindicated, all mechanically ventilated patients should be positioned with HOBE.
Resumo:
Aims and objectives To determine consensus across acute care specialty areas on core physical assessment skills necessary for early recognition of changes in patient status in general wards. Background Current approaches to physical assessment are inconsistent and have not evolved to meet increased patient and system demands. New models of nursing assessment are needed in general wards that ensure a proactive and patient safety approach. Design A modified Delphi study. Methods Focus group interviews with 150 acute care registered nurses (RNs) at a large tertiary referral hospital generated a framework of core skills that were developed into a web-based survey. We then sought consensus with a panel of 35 senior acute care RNs following a classical Delphi approach over three rounds. Consensus was predefined as at least 80% agreement for each skill across specialty areas. Results Content analysis of focus group transcripts identified 40 discrete core physical assessment skills. In the Delphi rounds, 16 of these were consensus validated as core skills and were conceptually aligned with the primary survey: (Airway) Assess airway patency; (Breathing) Measure respiratory rate, Evaluate work of breathing, Measure oxygen saturation; (Circulation) Palpate pulse rate and rhythm, Measure blood pressure by auscultation, Assess urine output; (Disability) Assess level of consciousness, Evaluate speech, Assess for pain; (Exposure) Measure body temperature, Inspect skin integrity, Inspect and palpate skin for signs of pressure injury, Observe any wounds, dressings, drains and invasive lines, Observe ability to transfer and mobilise, Assess bowel movements. Conclusions Among a large and diverse group of experienced acute care RNs consensus was achieved on a structured core physical assessment to detect early changes in patient status. Relevance to clinical practice Although further research is needed to refine the model, clinical application should promote systematic assessment and clinical reasoning at the bedside.
Resumo:
Objective: To document electroencephalogram (EEG) changes and their correlation with clinical parameters in a newly diagnosed pediatric cohort of type 1 diabetes mellitus (T1DM) patients with and without diabetic ketoacidosis (DKA) and to define their medium term utility and significance. Research design and methods: Prospective longitudinal study of children presenting with T1DM. EEGs were performed within 24 h of diagnosis, day 5, and at 6 months post-diagnosis and reviewed by a neurologist blinded to clinical status. Severity of encephalopathy was graded from 1 to 5 using the Aoki and Lombroso encephalopathy scale. Cognitive abilities were assessed using standardized tests of attention, memory, and intelligence. Results: Eighty eight children were recruited; 34 presented with DKA. Abnormal background slowing was more often observed in the first 24 h in children with DKA (p = 0.01). Encephalopathy scores on day 1 correlated with initial pH, CO2, HCO3, base excess, respiratory rate, heart rate, diastolic blood pressure, and IV fluid intake (all parameters p < 0.05). EEG scores at day 1 did not correlate with contemporaneous mental state or cognition in the medium term. Conclusions: DKA was associated with significant clinical and neurophysiologic signs of brain dysfunction at presentation. While EEG is sensitive to the detection of encephalopathy in newly diagnosed T1DM, it has limited use in identifying children at risk of later cognitive deficits.