948 resultados para relative biological effectiveness
Resumo:
The potential that laser based particle accelerators offer to solve sizing and cost issues arising with conventional proton therapy has generated great interest in the understanding and development of laser ion acceleration, and in investigating the radiobiological effects induced by laser accelerated ions. Laser-driven ions are produced in bursts of ultra-short duration resulting in ultra-high dose rates, and an investigation at Queen's University Belfast was carried out to investigate this virtually unexplored regime of cell rdaiobiology. This employed the TARANIS terawatt laser producing protons in the MeV range for proton irradiation, with dose rates exceeding 10 Gys on a single exposure. A clonogenic assay was implemented to analyse the biological effect of proton irradiation on V79 cells, which, when compared to data obtained with the same cell line irradiated with conventionally accelerated protons, was found to show no significant difference. A Relative Biological effectiveness of 1.4±0.2 at 10 % Survival Fraction was estimated from a comparison with a 225 kVp X-ray source. © 2013 SPIE.
Resumo:
The ultra short duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10 Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live, cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.
Resumo:
Purpose: To investigate the clinical implications of a variable relative biological effectiveness (RBE) on proton dose fractionation. Using acute exposures, the current clinical adoption of a generic, constant cell killing RBE has been shown to underestimate the effect of the sharp increase in linear energy transfer (LET) in the distal regions of the spread-out Bragg peak (SOBP). However, experimental data for the impact of dose fractionation in such scenarios are still limited.
Methods and Materials: Human fibroblasts (AG01522) at 4 key depth positions on a clinical SOBP of maximum energy 219.65 MeV were subjected to various fractionation regimens with an interfraction period of 24 hours at Proton Therapy Center in Prague, Czech Republic. Cell killing RBE variations were measured using standard clonogenic assays and were further validated using Monte Carlo simulations and parameterized using a linear quadratic formalism.
Results: Significant variations in the cell killing RBE for fractionated exposures along the proton dose profile were observed. RBE increased sharply toward the distal position, corresponding to a reduction in cell sparing effectiveness of fractionated proton exposures at higher LET. The effect was more pronounced at smaller doses per fraction. Experimental survival fractions were adequately predicted using a linear quadratic formalism assuming full repair between fractions. Data were also used to validate a parameterized variable RBE model based on linear α parameter response with LET that showed considerable deviations from clinically predicted isoeffective fractionation regimens.
Conclusions: The RBE-weighted absorbed dose calculated using the clinically adopted generic RBE of 1.1 significantly underestimates the biological effective dose from variable RBE, particularly in fractionation regimens with low doses per fraction. Coupled with an increase in effective range in fractionated exposures, our study provides an RBE dataset that can be used by the modeling community for the optimization of fractionated proton therapy.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
The Plasma Focus is a device designed to generate a plasma sheet between two coaxial electrodes by means of a high voltage difference. The plasma is then driven to collapse into a “pinch”, where thermonuclear conditions prevail. During the “pinch phase” charged particles are emitted, with two main components: an ion beam peaked forward and an electron beam directed backward. The electron beam emitted backward by Plasma Focus devices is being investigated as a radiation source for medical applications, using it to produce x-rays by interaction with appropriate targets (through bremsstrahlung and characteristic emission). A dedicated Plasma Focus device, named PFMA-3 (Plasma Focus for Medical Applications number 3), has been designed, put in operation and tested by the research groups of the Universities of Bologna and Ferrara. The very high dose rate (several gray per discharge, in less than 1 µs) is a peculiarity of this device that has to be investigated, as it might modify the relative biological effectiveness (RBE). Aim of this Ph.D. project was to investigate the main physical properties of the low-energy x-ray beams produced by a Plasma Focus device and their potential medical applications to IORT treatments. It was necessary to develop the optimal geometrical configuration; to evaluate the x-rays produced and their dose deposited; to estimate the energy electron spectrum produced in the “pinch phase”; to study an optimal target for the conversion of the x-rays; to conduct simulations to study the physics involved; and in order to evaluate the radio-biological features of the beam, cell holders had to be developed for both irradiations and cell growth conditions.
Resumo:
External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. ^ The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. ^ The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100. ^
Resumo:
Although frequently cured of Hodgkin lymphoma, adolescents and young adults can develop radiation induced second cancers. These patients could potentially benefit from scanned ion radiotherapy yet likely would require motion mitigation strategies. In theory, four-dimensional (4D) optimization of ion beam fields for individual motion states of respiration can enable superior sparing of healthy tissue near moving targets, compared to other motion mitigation strategies. Furthermore, carbon-ion therapy can sometimes provide greater relative biological effectiveness (RBE) for cell sterilization in a target but nearly equivalent RBE in tissue upstream of the target, compared to proton therapy. Thus, we expected that for some patients with Hodgkin lymphoma, carbon-ion therapy would reduce the predicted risk of second cancer incidence in the breast compared with proton therapy. The purpose of this work was to determine whether 4D-optimized carbon-ion therapy would significantly reduce the predicted risk of radiation induced second cancers in the breast for female Hodgkin lymphoma patients while preserving tumor control compared with proton therapy. To achieve our goals, we first investigated whether 4D-optimized carbon beam tracking could reduce dose to volumes outside a moving target compared with 3D-optimized carbon beam tracking while preserving target dose coverage. To understand the reliability of scanned carbon beam tracking, we studied the robustness of dose distributions in thoracic targets to uncertainties in patient motion. Finally, we investigated whether using carbon-ion therapy instead of proton therapy would significantly reduce the predicted risk of second cancer in the breast for a sample of Hodgkin lymphoma patients. We found that 4D-optimized ion beam tracking therapy can reduce the maximum dose to critical structures near a moving target by as much as 53%, compared to 3D-optimized ion beam tracking therapy. We validated these findings experimentally using a scanned carbon ion synchrotron and a motion phantom. We found scanned carbon beam tracking to be sensitive to a number of motion uncertainties, most notably phase delays in tracking, systematic spatial errors, and interfractional motion changes. Our findings indicate that a lower risk of second cancer in the breast might be expected for some Hodgkin lymphoma patients using carbon-ion therapy instead of proton therapy. For our reference scenario, we found the ratio of risk to be 0.77 ± 0.35 for radiogenic breast cancer after carbon-ion therapy versus proton therapy. Our findings were dependent on the RBE values for tumor induction and the radiosensitivity of breast tissue, as well as the physical dose distribution.
Resumo:
Climate change is a major threat to global biodiversity, and its impacts can act synergistically to heighten the severity of other threats. Most research on projecting species range shifts under climate change has not been translated to informing priority management strategies on the ground. We develop a prioritization framework to assess strategies for managing threats to biodiversity under climate change and apply it to the management of invasive animal species across one-sixth of the Australian continent, the Lake Eyre Basin. We collected information from key stakeholders and experts on the impacts of invasive animals on 148 of the region's most threatened species and 11 potential strategies. Assisted by models of current distributions of threatened species and their projected distributions, experts estimated the cost, feasibility, and potential benefits of each strategy for improving the persistence of threatened species with and without climate change. We discover that the relative cost-effectiveness of invasive animal control strategies is robust to climate change, with the management of feral pigs being the highest priority for conserving threatened species overall. Complementary sets of strategies to protect as many threatened species as possible under limited budgets change when climate change is considered, with additional strategies required to avoid impending extinctions from the region. Overall, we find that the ranking of strategies by cost-effectiveness was relatively unaffected by including climate change into decision-making, even though the benefits of the strategies were lower. Future climate conditions and impacts on range shifts become most important to consider when designing comprehensive management plans for the control of invasive animals under limited budgets to maximize the number of threatened species that can be protected.
Resumo:
Human hepatoma and normal liver cells were irradiated with C-12(6+), ion beams (LET= 96.05 keV/mu m) and gamma-rays at Heavy Ion Research Facility in Lanzhou (HIRFL). The chromatid breaks and break types were detected using the premature chromosome condensation technique. Our experimental results showed that chromatid breaks seem to have a good relation with C-12(6+) absorbed dose and C-12(6+) are more effective to induce chromatid breaks as compared to they-rays. For C-12(6+) ion irradiation the major break was isochromatid break, while chromatid breaks were dominant for gamma-ray irradiation. We also observed that the Relative Biology Effectiveness (RBE) of C-12(6+) ion is about 2.5 times higher than that of gamma-rays.
Resumo:
INTRODUCTION AND OBJECTIVES:Recently, three novel non-vitamin K antagonist oral anticoagulants received approval for reimbursement in Portugal for patients with non-valvular atrial fibrillation (AF). It is therefore important to evaluate the relative cost-effectiveness of these new oral anticoagulants in Portuguese AF patients. METHODS: A Markov model was used to analyze disease progression over a lifetime horizon. Relative efficacy data for stroke (ischemic and hemorrhagic), bleeding (intracranial, other major bleeding and clinically relevant non-major bleeding), myocardial infarction and treatment discontinuation were obtained by pairwise indirect comparisons between apixaban, dabigatran and rivaroxaban using warfarin as a common comparator. Data on resource use were obtained from the database of diagnosis-related groups and an expert panel. Model outputs included life years gained, quality-adjusted life years (QALYs), direct healthcare costs and incremental cost-effectiveness ratios (ICERs). RESULTS:Apixaban provided the most life years gained and QALYs. The ICERs of apixaban compared to warfarin and dabigatran were €5529/QALY and €9163/QALY, respectively. Apixaban was dominant over rivaroxaban (greater health gains and lower costs). The results were robust over a wide range of inputs in sensitivity analyses. Apixaban had a 70% probability of being cost-effective (at a threshold of €20 000/QALY) compared to all the other therapeutic options. CONCLUSIONS:Apixaban is a cost-effective alternative to warfarin and dabigatran and is dominant over rivaroxaban in AF patients from the perspective of the Portuguese national healthcare system. These conclusions are based on indirect comparisons, but despite this limitation, the information is useful for healthcare decision-makers.
Resumo:
Objectives: To establish the relative cost effectiveness of community leg ulcer clinics that use four layer compression bandaging versus usual care provided by district nurses.
Resumo:
Bilateral corneal blindness represents a quarter of the total blind, world-wide. The artificial cornea in assorted forms, was developed to replace opaque non-functional corneas and to return sight in otherwise hopeless cases that were not amenable to corneal grafts; believed to be 2% of corneal blind. Despite technological advances in materials design and tissue engineering no artificial cornea has provided absolute, long-term success. Formidable problems exist, due to a combination of unpredictable wound healing and unmanageable pathology. To have a solid guarantee of reliable success an artificial cornea must possess three attributes: an optical window to replace the opaque cornea; a strong, long term union to surrounding ocular tissue; and the ability to induce desired host responses. A unique artificial cornea possesses all three functional attributes- the Osteo-odonto-keratoprosthesis (OOKP). The OOKP has a high success rate and can survive for up to twenty years, but it is complicated both in structure and in surgical procedure; it is expensive and not universally available. The aim of this project was to develop a synthetic substitute for the OOKP, based upon key features of the tooth and bone structure. In doing so, surgical complexity and biological complications would be reduced. Analysis of the biological effectiveness of the OOKP showed that the structure of bone was the most crucial component for implant retention. An experimental semi-rigid hydroxyapatite framework was fabricated with a complex bone-like architecture, which could be fused to the optical window. The first method for making such a framework, was pressing and sintering of hydroxyapatite powders; however, it was not possible to fabricate a void architecture with the correct sizes and uniformity of pores. Ceramers were synthesised using alternative pore forming methods, providing for improved mechanical properties and stronger attachment to the plastic optical window. Naturally occurring skeletal structures closely match the structural features of all forms of natural bone. Synthetic casts were fabricated using the replamineform process, of desirable natural artifacts, such as coral and sponges. The final method of construction by-passed ceramic fabrication in favour of pre-formed coral derivatives and focused on methods for polymer infiltration, adhesion and fabrication. Prototypes were constructed and evaluated; a fully penetrative synthetic OOKP analogue was fabricated according to the dimensions of the OOKP. Fabrication of the cornea shaped OOKP synthetic analogue was also attempted.
Resumo:
Background: Coronary heart disease (CHD) is a public health priority in the UK. The National Service Framework (NSF) has set standards for the prevention, diagnosis and treatment of CHD, which include the use of cholesterol-lowering agents aimed at achieving targets of blood total cholesterol (TC) < 5.0 mmol/L and low density lipoprotein-cholesterol (LDL-C) < 3.0 mmol/L. In order to achieve these targets cost effectively, prescribers need to make an informed choice from the range of statins available. Aim: To estimate the average and relative cost effectiveness of atorvastatin, fluvastatin, pravastatin and simvastatin in achieving the NSF LDL-C and TC targets. Design: Model-based economic evaluation. Methods: An economic model was constructed to estimate the number of patients achieving the NSF targets for LDL-C and TC at each dose of statin, and to calculate the average drug cost and incremental drug cost per patient achieving the target levels. The population baseline LDL-C and TC, and drug efficacy and drug costs were taken from previously published data. Estimates of the distribution of patients receiving each dose of statin were derived from the UK national DIN-LINK database. Results: The estimated annual drug cost per 1000 patients treated with atorvastatin was £289 000, with simvastatin £315 000, with pravastatin £333 000 and with fluvastatin £167 000. The percentages of patients achieving target are 74.4%, 46.4%, 28.4% and 13.2% for atorvastatin, simvastatin, pravastatin and fluvastatin, respectively. Incremental drug cost per extra patient treated to LDL-C and TC targets compared with fluvastafin were £198 and £226 for atorvastatin, £443 and £567 for simvastatin and £1089 and £2298 for pravastatin, using 2002 drug costs. Conclusions: As a result of its superior efficacy, atorvastatin generates a favourable cost-effectiveness profile as measured by drug cost per patient treated to LDL-C and TC targets. For a given drug budget, more patients would achieve NSF LDL-C and TC targets with atorvastatin than with any of the other statins examined.
Resumo:
BACKGROUND: Heavy menstrual bleeding (HMB) is a common problem, yet evidence to inform decisions about initial medical treatment is limited. OBJECTIVES: To assess the clinical effectiveness and cost-effectiveness of the levonorgestrel-releasing intrauterine system (LNG-IUS) (Mirena(®), Bayer) compared with usual medical treatment, with exploration of women's perspectives on treatment. DESIGN: A pragmatic, multicentre randomised trial with an economic evaluation and a longitudinal qualitative study. SETTING: Women who presented in primary care. PARTICIPANTS: A total of 571 women with HMB. A purposeful sample of 27 women who were randomised or ineligible owing to treatment preference participated in semistructured face-to-face interviews around 2 and 12 months after commencing treatment. INTERVENTIONS: LNG-IUS or usual medical treatment (tranexamic acid, mefenamic acid, combined oestrogen-progestogen or progesterone alone). Women could subsequently swap or cease their allocated treatment. OUTCOME MEASURES: The primary outcome was the patient-reported score on the Menorrhagia Multi-Attribute Scale (MMAS) assessed over a 2-year period and then again at 5 years. Secondary outcomes included general quality of life (QoL), sexual activity, surgical intervention and safety. Data were analysed using iterative constant comparison. A state transition model-based cost-utility analysis was undertaken alongside the randomised trial. Quality-adjusted life-years (QALYs) were derived from the European Quality of Life-5 Dimensions (EQ-5D) and the Short Form questionnaire-6 Dimensions (SF-6D). The intention-to-treat analyses were reported as cost per QALY gained. Uncertainty was explored by conducting both deterministic and probabilistic sensitivity analyses. RESULTS: The MMAS total scores improved significantly in both groups at all time points, but were significantly greater for the LNG-IUS than for usual treatment [mean difference over 2 years was 13.4 points, 95% confidence interval (CI) 9.9 to 16.9 points; p < 0.001]. However, this difference between groups was reduced and no longer significant by 5 years (mean difference in scores 3.9 points, 95% CI -0.6 to 8.3 points; p = 0.09). By 5 years, only 47% of women had a LNG-IUS in place and 15% were still taking usual medical treatment. Five-year surgery rates were low, at 20%, and were similar, irrespective of initial treatments. There were no significant differences in serious adverse events between groups. Using the EQ-5D, at 2 years, the relative cost-effectiveness of the LNG-IUS compared with usual medical treatment was £1600 per QALY, which by 5 years was reduced to £114 per QALY. Using the SF-6D, usual medical treatment dominates the LNG-IUS. The qualitative findings show that women's experiences and expectations of medical treatments for HMB vary considerably and change over time. Women had high expectations of a prompt effect from medical treatments. CONCLUSIONS: The LNG-IUS, compared with usual medical therapies, resulted in greater improvement over 2 years in women's assessments of the effect of HMB on their daily routine, including work, social and family life, and psychological and physical well-being. At 5 years, the differences were no longer significant. A similar low proportion of women required surgical intervention in both groups. The LNG-IUS is cost-effective in both the short and medium term, using the method generally recommended by the National Institute for Health and Care Excellence. Using the alternative measures to value QoL will have a considerable impact on cost-effectiveness decisions. It will be important to explore the clinical and health-care trajectories of the ECLIPSE (clinical effectiveness and cost-effectiveness of levonorgestrel-releasing intrauterine system in primary care against standard treatment for menorrhagia) trial participants to 10 years, by which time half of the cohort will have reached menopause. TRIAL REGISTRATION: Current Controlled Trials ISRCTN86566246. FUNDING: This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 19, No. 88. See the NIHR Journals Library website for further project information.
Resumo:
The policy reform literature is primarily concerned with the construction of reforms that yield welfare gains. By contrast, this paper’s contribution is to develop a theoretical concept for which the focus is upon the sizes of welfare gains accruing from policy reforms rather than upon their signs. In undertaking this task, and by focusing on tariff reforms, we introduce the concept of a steepest ascent policy reform, which is a locally optimal reform in the sense that it achieves the highest marginal gain in utility of any feasible local reform. We argue that this reform presents itself as a natural benchmark for the evaluation of the welfare effectiveness of other popular tariff reforms such as the proportional tariff reduction and the concertina rules, since it provides the maximal welfare gain of all possible local reforms. We derive properties of the steepest ascent tariff reform, construct an index to measure the relative welfare effectiveness of any given tariff reform, determine conditions under which proportional and concertina reforms are locally optimal and provide illustrative examples.