989 resultados para reflectance-difference spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical calculations within the envelope function framework have been performed to analyze the relations between the magnitude of in-plane optical anisotropy and the values of the additional hole-mixing coefficients due to interface and electric field in (001) symmetric GaAs/AlxGa1-xAs superlattices for light propagating along the [001] direction. It is found that the heavy- and light-hole states are mixed independently by interface and electric field. The numeric results demonstrate that the line shape of the in-plane anisotropic spectrum is determined by the ratio of the two hole-mixing coefficients. Theoretical analysis shows that with the help of simple calculation of the anisotropy at k=0, reliable values of the hole-mixing coefficients can be determined by reflectance-difference spectroscopy (IDS) technique, demanding no tedious fitting of experimental curves. The in-plane optical anisotropy measured by RDS provides a new method of getting the information on buried interfaces through the Value of the hole-mixing coefficient due to interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that part of the reflectance difference resonance near the E-0 energy of ZnSe is due to the anisotropic in-plane strain in the ZnSe thin films, as films grown on three distinctly different substrates, GaAs, GaP, and ZnS, all show the resonance at the same energy. Such anisotropic strain induced resonance is predicted and also observed near the E-1/E-1+Delta(1) energies in ZnSe grown on GaAs. The theory also predicts that there should be no resonance due to strain at, the E-0+Delta(0) energy, which is consistent with experiments. The strain anisotropy is rather independent of the ZnSe layer thickness, or whether the film is strain relaxed. For ZnSe films with large lattice mismatch with substrates, the resonance at the E-1/E-1+Delta(1) energies is absent, very likely due to the poor crystalline quality of the 20 nm or so surface layer. (C) 2000 American Vacuum Society. [S0734-211X(00)05604-3].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A prominent effect of the interface potential (IP) [E. L. Ivchenko and A. Yu. Kaminski, Phys. Rev. B 54, 5852 (1996); O. Krebs and P. Voisin, Phys. Rev. Lett. 77, 1829 (1996)], the optical anisotropy of the forbidden transitions in quantum wells has been observed by reflectance-difference spectroscopy. Predictions by the heavy-light-hole coupling IP models are qualitatively consistent with all the observed features of the forbidden and the allowed transitions. The fact that the predicted value of the relative, transition strength, which depends on neither the IP strength nor the electric field, disagrees with the observed one indicates that coupling involving X and/or L bands may also be important. [S0163-1829(99)04227-7].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variable-temperature reflectance difference spectroscopy study of GaAs grown by molecular beam epitaxy at low-temperature GaAs (LT-GaAs) shows that the Fermi level is mostly determined by the point defects in samples annealed at below 600 degrees C and can be shifted by photoquenching the defects. The Fermi level is otherwise almost temperature independent, leading to an estimated width of the defect band of 150 meV in the as-grown sample, For LT-GaAs annealed at 850 degrees C, the Fermi level is firmly pinned, most Likely by the As precipitates. (C) 1998 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The steplike density of states obtained from reflectance-difference spectroscopy demonstrates that ultrathin InAs layers should be regarded as two-dimensional quantum wells rather than isolated clusters, even for the sample with only 1/3 monolayer InAs in (311)-oriented GaAs. The degree of anisotropy is within the intrinsic anisotropy of (311)-oriented ultrathin quantum wells, indicating that there is little structural or strain anisotropy in the InAs islands. (C) 1998 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-plane optical anisotropy which comes from the heavy hole and the light hole transitions in an InAs monolayer inserted in (311)-oriented GaAs matrix is observed by reflectance difference spectroscopy. The observed steplike density of states demonstrates that the InAs layer behaves like a two-dimensional quantum well rather than isolated quantum dots. The magnitude of the anisotropy is in good agreement with the intrinsic anisotropy of (311) orientation quantum wells, indicating that there is little structural or strain anisotropy of the InAs layer grown on (311)-oriented GaAs surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present the growth of InAs rings by droplet epitaxy. A complete process from the rings formation to their density saturation has been demonstrated: A morphological evolution with the varying of the indium deposition amount has been, clearly observed. Our results indicate that there, is a critical deposition amount (similar to 1.1 ML) for the indium to form InAs dots before droplets form; there is also a critical deposition amount (similar to 1.4 ML) to form InAs ring, but it is caused by the formation of droplets as the deposition amount increases. The density of the rings saturates when the deposition amount exceeds similar to 3.3 ML; because the adsorbed indium atoms block sites for further adsorption and the following supplied In only contributes to the size increase of In droplets. Still, as the In deposition amount increases, we can find coupled quantum rings. Moreover, the wetting layer properties of these structures are studied by reflectance difference spectroscopy, which shows a complicated evolution with the In amount. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that part of the reflectance difference resonance near the E-0 energy of ZnSe is due to the anisotropic in-plane strain in the ZnSe thin films, as films grown on three distinctly different substrates, GaAs, GaP, and ZnS, all show the resonance at the same energy. Such anisotropic strain induced resonance is predicted and also observed near the E-1/E-1+Delta(1) energies in ZnSe grown on GaAs. The theory also predicts that there should be no resonance due to strain at, the E-0+Delta(0) energy, which is consistent with experiments. The strain anisotropy is rather independent of the ZnSe layer thickness, or whether the film is strain relaxed. For ZnSe films with large lattice mismatch with substrates, the resonance at the E-1/E-1+Delta(1) energies is absent, very likely due to the poor crystalline quality of the 20 nm or so surface layer. (C) 2000 American Vacuum Society. [S0734-211X(00)05604-3].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The steplike density of states obtained from reflectance-difference spectroscopy demonstrates that ultrathin InAs layers should be regarded as two-dimensional quantum wells rather than isolated clusters, even for the sample with only 1/3 monolayer InAs in (311)-oriented GaAs. The degree of anisotropy is within the intrinsic anisotropy of (311)-oriented ultrathin quantum wells, indicating that there is little structural or strain anisotropy in the InAs islands. (C) 1998 Elsevier Science B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel method of obtaining high-quality Raman spectra of luminescent samples was tested using cyclohexane solutions which had been treated with a fluorescent dye. The method involves removing the fixed pattern irregularity found in the spectra taken with CCD detectors by subtracting spectra taken at several different, closely spaced spectrometer positions. It is conceptually similar to SERDS (shifted excitation Raman difference spectroscopy) but has the distinct experimental advantage that it does not require a tunable laser source. The subtracted spectra obtained as the raw data are converted into a more recognisable and conventional form by iterative fitting of appropriate double Lorentzian functions whose peak parameters are then used to 'reconstruct' a conventional representation of the spectrum. Importantly, it is shown that the degree of uncertainty in the resultant 'reconstructed' spectra can be gauged reliably by comparing reconstructed spectra obtained at two different spectrometer shifts (delta and 2 delta), The method was illustrated and validated using a solvent (cyclohexane) the spectrum of which is well known and which contains both regions with complex overlapping bands and regions with isolated bands, Possible sources of error are discussed and it is shown that, provided the degree of uncertainty in the data is correctly characterised, it is completely valid to draw conclusions about the spectra of the sample on the basis of the reconstructed data. The acronym SSRS (subtracted shifted Raman spectroscopy; pronounced scissors) is proposed for this method, to distinguish it from the SERDS technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado, Qualidade em Análises, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have used near ultraviolet photoacoustic spectroscopy (PAS) over the wavelength range 240-320 nm to investigate the complex formed between the homodimeric bothropstoxin-I, a lysine-49-phospholipase A(2) from the venom of Bothrops jararacussu (BthTx-I), with the anionic amphiphile sodium dodecyl sulfate (SDS). At molar ratios > 10, the complex developed a significant light scatter, accompanied by a decrease in the intrinsic tryptophan fluorescence intensity emission (ITFE) of the protein, and an increase in the near UV-PAS signal. Difference PAS spectroscopy at SDS/BthTx-I ratios < 8 were limited to the region 280-290 nm, suggesting initial SDS binding to the tryptophan 77 located at the dimer interface. At SDS/BthTx-I ratios > 10, the intensity between 260 and 320 nm increases demonstrating that the more widespread tyrosine and phenylalanine residues contribute to the SDS/BthTx-I interaction. PAS signal phase changes at wavelengths specific for each aromatic residue suggest that the Trp77 becomes more buried on SDS binding, and that protein structural changes and dehydration may alter the microenvironments of Tyr and Phe residues. These results demonstrate the potential of near UV-PAS for the investigation of membrane proteins/detergent complexes in which light scatter is significant. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the atomic surface properties of differently prepared silicon and germanium (100) surfaces during metal-organic vapour phase epitaxy/chemical vapour deposition (MOVPE/MOCVD), in particular the impact of the MOVPE ambient, and applied reflectance anisotropy/difference spectroscopy (RAS/RDS) in our MOVPE reactor to in-situ watch and control the preparation on the atomic length scale for subsequent III-V-nucleation. The technological interest in the predominant opto-electronic properties of III-V-compounds drives the research for their heteroepitaxial integration on more abundant and cheaper standard substrates such as Si(100) or Ge(100). In these cases, a general task must be accomplished successfully, i.e. the growth of polar materials on non-polar substrates and, beyond that, very specific variations such as the individual interface formation and the atomic step structure, have to be controlled. Above all, the method of choice to grow industrial relevant high-performance device structures is MOVPE, not normally compatible with surface and interface sensitive characterization tools, which are commonly based on ultrahigh vacuum (UHV) ambients. A dedicated sample transfer system from MOVPE environment to UHV enabled us to benchmark the optical in-situ spectra with results from various surfaces science instruments without considering disruptive contaminants. X-ray photoelectron spectroscopy (XPS) provided direct observation of different terminations such as arsenic and phosphorous and verified oxide removal under various specific process parameters. Absorption lines in Fourier-transform infrared (FTIR) spectra were used to identify specific stretch modes of coupled hydrides and the polarization dependence of the anti-symmetric stretch modes distinguished different dimer orientations. Scanning tunnelling microscopy (STM) studied the atomic arrangement of dimers and steps and tip-induced H-desorption proved the saturation of dangling bonds after preparati- n. In-situ RAS was employed to display details transiently such as the presence of H on the surface at lower temperatures (T <; 800°C) and the absence of Si-H bonds at elevated annealing temperature and also surface terminations. Ge buffer growth by the use of GeH4 enables the preparation of smooth surfaces and leads to a more pronounced amplitude of the features in the spectra which indicates improvements of the surface quality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By using a Raman microscope, we show that it is possible to probe the conformational states in protein crystals and crystal fragments under growth conditions (in hanging drops). The flavin cofactor in the enzyme para-hydroxybenzoate hydroxylase can assume two conformations: buried in the protein matrix (“in”) or essentially solvent-exposed (“out”). By using Raman difference spectroscopy, we previously have identified characteristic flavin marker bands for the in and out conformers in the solution phase. Now we show that the flavin Raman bands can be used to probe these conformational states in crystals, permitting a comparison between solution and crystal environments. The in or out marker bands are similar for the respective conformers in the crystal and in solution; however, significant differences do exist, showing that the environments for the flavin's isoalloxazine ring are not identical in the two phases. Moreover, the Raman-band widths of the flavin modes are narrower for both in and out conformers in the crystals, indicating that the flavin exists in a more limited range of closely related conformational states in the crystal than in solution. In general, the ability to compare detailed Raman data for complexes in crystals and solution provides a means of bridging crystallographic and solution studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the interactions of small molecules with gold nanoparticles is important for controlling their surface chemistry and, hence, how they can be used in specific applications. The interaction of iodoperfluorobenzene compounds with gold nanoparticles was investigated by UV-Vis difference spectroscopy, surface enhanced Raman spectroscopy (SERS) and Synchrotron X-ray photoelectron spectroscopy (XPS). Results from UV-Vis difference spectroscopy demonstrated that iodoperfluorobenzene compounds undergo charge transfer complexation with gold nanoparticles. SERS of the small molecule–gold nanoparticle adducts provided further evidence for formation of charge transfer complexes, while Synchrotron X-ray photoelectron spectroscopy provided evidence of the binding mechanism. Demonstration of interactions of iodoperfluorobenzene compounds with gold nanoparticles further expands the molecular toolbox that is available for functionalising gold nanoparticles and has significant potential for expanding the scope for generation of hybrid halogen bonded materials.